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PREFACE

This report presents a computer program for estimating parameters of
ground-water flow simulations by using nonlinear regression. The program
documented in this report is designed for incorporation into a modified
version of the modular finite-difference ground-water flow model developed
by the U.S. Geological Survey, which is also documented in this report. The
performance of this computer program has been tested in models of both
hypothetical and actual ground-water flow systems. Future applications,
however, might reveal errors that were not detected in the test simulations.
Users are requested to notify the originating office of any errors found in
the report or in the computer program. Updates might occasionally be made
to both the report and computer program. Users who wish to be added to the
mailing list to receive notice of updates, if any, can send a request to:

U.S. Geological Survey
P.0. Box 25046, MS 413
Denver, CO 80225-0046

Copies of the computer program and test data sets on tape or diskette
are available at cost of processing from:

U.S. Geological Survey
WATSTORE Program Office
437 National Center
Reston, VA 22092
Telephone: (703) 648-5695
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A COMPUTER PROGRAM (MODFLOWP) FOR ESTIMATING PARAMETERS OF A TRANSIENT,

THREE-DIMENSIONAL, GROUND-WATER FLOW MODEL USING NONLINEAR REGRESSION

By Mary C. Hill

ABSTRACT

This report documents a new version of the U.S. Geological Survey
modular, three-dimensional, finite-difference, ground-water flow model
(MODFLOW) which, with the new Parameter-Estimation Package that also is
documented in this report, can be used to estimate parameters by nonlinear
regression. The new version of MODFLOW is called MODFLOWP (pronounced
MOD-FLOW.P), and functions nearly identically to MODFLOW when the Parameter-
Estimation Package is not used. Parameters are estimated by minimizing a
weighted least-squares objective function by the modified Gauss-Newton
method or by a conjugate-direction method. Parameters used to calculate the
following MODFLOW model inputs can be estimated: Transmissivity and storage
coefficient of confined layers; hydraulic conductivity and specific yield of
unconfined layers; vertical leakance; vertical anisotropy (used to calculate
vertical leakance); horizontal anisotropy; hydraulic conductance of the
River, Streamflow-Routing, General-Head Boundary, and Drain Packages; areal
recharge rates; maximum evapotranspiration; pumpage rates; and the hydraulic
head at constant-head boundaries. Any spatial variation in parameters can
be defined by the user. Data used to estimate parameters can include
existing independent estimates of parameter values, observed hydraulic heads
or temporal changes in hydraulic heads, and observed gains and losses along
head-dependent boundaries (such as streams). Model output includes
statistics for analyzing the parameter estimates and the model; these
statistics can be used to quantify the reliability of the resulting model,
to suggest changes in model construction, and to compare results of models
constructed in different ways.



INTRODUCTION
Terminology

Some of the terms used in this report are
discussion that they need to be defined before

the term 'parameter’ refers to a quantity being estimated.
the hydraulic conductivity of defined

parameters would be, for example,

so fundamental to the
proceeding. In this report,

Thus, typical

areas of confined model layers 4 and 5, the recharge rate applied to a

defined area of model layer 1 during specified
when multiplied by defined constants, produces
selected cells listed in a River Package input

time steps, or a value which,

the hydraulic conductance for

file. The values produced by

parameter estimation are estimates of these parameters.

In contrast, the term ’‘model input’ refer

to the properties required

in the input files of MODFLOW, the U.S. Geological Survey (USGS) modular,

three-dimensional finite-difference ground-water flow model.

The input

files are described by McDonald and Harbaugh (1988) and Prudic (1989).
Typical model inputs are transmissivity of confined layers, hydraulic

conductivity of unconfined layers, and recharg¢ flux.

be calculated using parameters.

Use of the term ‘model’ in this report also might cause confusion.

Many model inputs can

To

coordinate with usage in the regression literature (for example, Fuller,

1987, p. 9), in this report the term model gen‘rally refers to the equations

and assumptions used to represent a physical system.

In this sense, a model

includes not only the numerical representation of the physical equations,

but also includes assumptions made to represent a physical system.

illustrate, consider linear models, which are

in this report.

To

sed for illustrative purposes

Linear models are of the form presented in equation (6).

Assumptions required to create a linear model Include how many parameters

and independent variables to use. For nonline
constructed using the numerical representation
equations as described for MODFLOW by McDonald
Prudic (1989), typical assumptions concern the
conditions, the definition of parameters to be
exclusion of physical features, and so on.
therefore, can differ in one or several of the

construction. In general, models also can dif

r models, such as those

of the ground-water flow

and Harbaugh (1988) and
location and type of boundary

estimated, the inclusion or

Models of a physical system,

assumptions used in model

fer by being based on




different physical equations--for example, one model might only include flow
through porous media, as in MODFLOW, whereas another also might represent
flow through a fracture. No capacity to vary the physical equationmns,
however, is provided in this report.

Confusion results because the numerical representation of the ground-
water flow equation presented by McDonald and Harbaugh (1988) and Prudic
(1989) (MODFLOW) also is called a model. To resolve any confusion, in this
report all references to the numerical representation of the ground-water
flow equation include citation of McDonald and Harbaugh (1988) and Prudic
(1989) or reference to MODFLOW or MODFLOWP, and an effort has been made to
clearly state that in other references to models, the more extensive
definition discussed above is implied.

Problem
Most numerical models of ground-water flow systems need to be
calibrated--that is, the model needs to be made to match the physical system
being modeled. The model and the physical system are compared based on
calibration criteria that are defined by the user. For example, typical
calibration criteria are that model parameter values are to be consistent
with independent estimates of associated field parameters, and that

simulated hydraulic-head values are to be similar to observed values.

Numerical models of ground-water flow systems can be calibrated by
trial-and-error, in which simulated aspects of the physical system are
repeatedly, manually changed until the model satisfactorily matches the
physical system as measured using the defined calibration criteria.
Although trial-and-error.calibration is conceptually simple, it has three
limitations. First, there is no way to know if the estimated parameter
values satisfy the calibration criteria better than some untested set of
parameter values. This lack of knowing makes it difficult to test
hypotheses about a ground-water flow system because a model constructed
using one hypothesis might produce better results because of the parameter
values used, and not because that hypothesis is better than another. (The
process of comparing different hypotheses is called model discrimination.)
Second, it is difficult to determine if estimated parameters are highly

correlated--that is, that coordinated changes in model parameters would



produce identical results in terms of the caliLration criteria. When high
correlations are present, it is impossible to hniquely estimate the
parameter values. Third, the reliability of parameter estimates and
simulated results can only be assessed by the tedious process of manually
perturbing parameter values to perform a sensitivity analysis. The process
also is inexact because results depend on how much the parameter values are
perturbed, and the appropriate value is generally unknown. The lack of

precision makes it difficult to evaluate whether the calibrated model is

accurate enough to be used to make conclusions| about the aquifer system or

to predict aquifer response.

Alternatively, numerical models of ground-water flow systems can be
calibrated by nonlinear regression, in which the model itself is used to
determine changes in parameter values. Nonlinear regression is accomplished
in the following steps: !

1. Using the calibration criteria, definb an objective function, which
is a measure of how closely the model matches khe physical system.

2. Determine the parameter values that ﬂroduce the smallest value of
the objective function. This is called minimization or optimization of the
objective function, and, using the Parameter-Estimation Package of MODFLOWP,
can be accomplished with either the modified dauss-Newton method or a
conjugate-direction method. Because the grouﬂd-water flow equation is
nonlinear with respect to many of the parameters that are most commonly
estimated, the optimization methods are iteraine--that is, the same
procedure is repeated to update parameter values until the optimal parameter

values are reached.

3. Calculate statistics by which model discrimination and assessment
of model reliability can be accomplished easily and objectively.
Purpose and Sco

This report documents the changes made to MODFLOW, the USGS modular,
transient, three-dimensional, ground-water flow model, to create MODFLOWP
(pronounced MOD-FLOW<P). When used in conjunction with the new Parameter-
Estimation Package, which also is documented in this report, MODFLOWP is
designed to estimate parameters of ground-water flow simulations that are
steady-state or transient or both using nonlinear regression. When used
without the Parameter-Estimation Package, MODFLOWP performs almost exactly
like MODFLOW.




This report is intended to be used in conjunction with three other
publications. The first two are the documentation of MODFLOW (McDonald and
Harbaugh, 1988; Prudic, 1989). When applicable, their package and variable
names are repeated in this report, and the reader might need to refer to
those two publications for a complete discussion. The third publication is
Cooley and Naff’s (1990) teaching manual and documentation for a steady-
state, two-dimensional, ground-water flow model with nonlinear regression.
Many of the ideas presented in this report are discussed in more detail by
Cooley and Naff (1990), and that publication is referenced when those ideas

are discussed.

Parameters are estimated by .using existing, independent estimates of
parameter values (called prior estimates of the parameters), measured
hydraulic heads and temporal changes in hydraulic head, and measured gains
and losses along head-dependent boundaries (called observations of dependent
variables). Parameters that are used to calculate the following model
inputs can be estimated: properties of confined or unconfined aquifers;
horizontal anisotropy; vertical anisotropy (used to calculate the model
input vertical leakance); hydraulic conductance of selected cells of the
River, Streamflow-Routing, General-Head Boundary, or Drain Packages
(McDonald and Harbaugh, 1988; Prudic, 1989); areal recharge rates; maximum
evapotranspiration; pumpage rates; and the hydraulic head at constant-head

boundaries (head can vary linearly along the boundary).

The report begins with brief descriptions of numerical modeling of
grdund-water flow, followed by discussions of linear regression, nonlinear
regression, and the calculation of sensitivity-equation sensitivities used
in modified Gauss-Newton optimization and the gradient of the objective
function calculated by the adjoint-state method and used in conjugate-
direction optimization. Graphical and statistical methods for analyzing the
discrepancies between observed and simulated dependent-variable values, and
statistical methods for analyzing estimated parameter values and discrimi-
nating between different models are presented. There are detailed instruc-
tions for using the computer program, including data-entry formats. Two
test cases, data listings and outputs for those cases, a brief description
of all new and modified modules, and a listing of the FORTRAN program are
included. An example of how regression can be applied to a transient,

three-dimensional ground-water flow problem is shown in Yager (1991).



Parameter estimation requires the solution of many matrix equations
with dimensions equal to the number of active cells in the finite-difference
grid used to represent a ground-water flow system. These matrix equations
are solved most successfully by using direct (noniterative) or conjugate-
gradient solvers. The strongly implicit procedure (SIP) proved to be
impractical because one iteration parameter seed (McDonald and Harbaugh,
1988, p. 12-23) did not produce convergence for all matrix equations for
some test cases, and other solvers, such as slice-successive overrelaxation
(SSOR) and alternating-direction implicit (ADI), tend to be slow (Trescott
and Larson, 1977; Aziz and Settari, 1979, p. 281-294). A direct D4 solver
module for two-dimensional problems simulated using MODFLOW was used by Hill
(1990a), and is very efficient for two-dimensional problems. The D4 solver
is limited, however, because round-off error becomes significant for
problems with more than 500 to 1,000 active finite-difference cells. The D4
module has not been documented and is not readily available for users.
Conjugate-gradient solver modules have been developed for MODFLOW by Kuiper
(1987), Meyer and others (1989), Scandrett (1989), and Hill (1990b), and the
first and last modules are readily available for users. Conjugate-gradient
solvers generally are less efficient than D4 splvers for small problems, but
can be used to accurately solve large problems| (Hill, 1990a). Problems with
nonlinearities such as a water-table layer or nonlinear head-dependent

boundary, need an iterative solver.

Parameter estimation is complicated, and use of this package with an
inadequate background can easily produce fallacious conclusions. It is
assumed that readers of this report are familiar with the modeling of ground-
water flow and matrix addition and multiplication, and have a statistical
background equivalent to one college statistics course. Readers unfamiliar
with the modeling of ground-water flow need to| read one of the available
texts on the subject, such as Wang and Anderson (1982). Readers unfamiliar
with matrix addition and multiplication need tp read and do exercises from

Gere and Weaver (1965). Readers unfamiliar with statistics and linear

regression need to read and do exercises from Benjamin and Cornell (1970) or
another basic text on statistics, and Draper and Smith (1981). Readers
unfamiliar with nonlinear regression need to read and do exercises from Bard
(1974), Draper and Smith (1981), and Cooley and Naff (1990).

6



Notation

Throughout this report, matrices and vectors are presented using the
following notation:
Capital or Greek letters underlined twice indicate matrices: A, w.
A number underlined twice is a matrix, and all entries are equal
to that number: 1 is a matrix of ones.
Lower-case letters underlined once indicate column vectors: £, y.
A number underlined once is a column vector, and all entries are

equal to that number: 0 is a vector of zeros.

The element located in matrix row i and column j is designated as
follows: matrix A, elements ai,j; matrix V, elements vi,j

Tge ith element of vector £ is fi‘

A" 1is the transpose of matrix A.

gT is a row vector with the same elements as e.

é-l is the inverse of matrix A.

X is an N by M matrix if it has N rows and M columns. A column
vector might be N by 1, a row vector might be 1 by M

I is the identity matrix. Elements equal 1 along the diagonal and

are zero elsewhere.
Given a square, symmetric matrix A, 52 - éTé; é% = B, where B is
‘ defined so QTE = A.
If the scalar variable S is a function of vector a then:

as

da is a column vector with the ith element equal to 8S/8ai.
If the vector a is a function of the scalar «, then:
3a/8a is a column vector with the ith element equal to 3ai/8a.
Derivatives of matrices with respect to vectors produce arrays with
more than two dimensions. These are discussed in detail when they
are mentioned in the text.
Subscripts also are used to designate row, column, and layer number of
the finite-difference grid and sequential cell number, and are
defined when they are mentioned in the text.

Some module variables are used in the text to expedite relating the
text to the modules. These variables are written in uppercase letters, and
are defined in the text where they are introduced and in the "List of

Variables" in Appendix C.
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MODELING TRANSIENT, THREE-DIMENSIONAL, GROUND-WATER FLOW SYSTEMS

Ground-Water Flow Equation
MODFLOW is documented extensively by McDonald and Harbaugh (1988) and

Prudic (1989), and only those parts needed to understand MODFLOWP and the

Parameter-Estimation Package are repeated here.

In their development, McDonald and Harbaugh (1988, ch. 2) discretized
the ground-water flow equation spatially by using the block-centered,
finite-difference method, and they implicitly differenced the equation in
time. For one finite-difference cell, the discretized, differenced ground-
water flow equation can be written as (McDonald and Harbaugh, 1988, p. 2-
19):

n n n n
CRi,j-1/2,k(hi,j-l,k‘hi,j,k) *OR; h1y2, 6Py e, kP 5 K0
n n
C; 12,7, kMi-1, 1 kPE, 560 * CCantn, o kPhen, ke 5K
(L
n n n n
PO gk-12P 5 k1P 50 Y Vg 2Py el P LK)
-l
o0 0 n (Ar Ac Avk)(h i k i k)
+P7 . h, ., +Q% ., =5 L
i,j,k'i,j,k i,j,k si,j,k tn tn 1
where n is the time step at which hydraulic head is being
calculated, and n-1 is the previous time step;
i,j,k are the row, column, and layer of the finite-difference
cell, and, thus, identify spatial location;
Ar is the length of the cell as measured along a row (L);
Aci is the length of the cell as measured along a column (L);
Avk is the length of the cell as measured perpendicular to the
orientation of the layer (L);
h? j.k is the hydraulic head in the center of cell i,j,k at the
end of time step n;
CRi j-1/2,k are the lateral hydraulic conductances between the cell at
CRi 4172,k i,j,k and the two neighboring cells in row i (L2/T);



Cci-1/2 j k}are the lateral hydraulic conductances between the cell at

| Cci+1/2,j,k i,j,k and the two neighboring cells in column j (L /T);

Cvi,j,k-1/2}are the vertical hydraulic conductances between the cell

Cvi,j,k+1/2 at i,j,k and the two neighboring cells in adjoining
model layers (L2/T); i

P?,j,k is the sum of all conductances of head-dependent boundary
conditions applicable at cell i,j,k at time step n
w?/m;

Q?,j,k is the sum of all sources or sinks or both at cell i, j,k
at time step n, the conductances of head-dependent
boundaries multiplied by the|known hydraulic head of the
head-dependent boundary condition at cell i, j,k at time
step n, and terms related tolconstant-head boundaries
L3/1); ana

Ssi - is the specific storage, or the specific yield divided by

I Av,, at cell i,J,k.

k’

The calculation of the hydraulic conductancgs is discussed by McDonald
and Harbaugh (1988, ch. 5), and can be summarizeh as:

TR. . TR.
CR; . ja1/2,k = 28¢; TRl’llBZr 1‘1;;'k Ar.’ (2a)
! ! i,j,k j+1 i, j+l,k jj
TC. . TC, .
CCirviya, j k= 287 TG~ he e, (2b)
i i,j,k i+l i+l,j,k i
m Az ]-1
cv, . = | = Ar Ac ., (2¢)
i,j,k+1/2 g-lKg Jji
where TR, . is the transmissivity along the &ow at cell i,j,k, and

1k equals the hydraulic conductivity along the row multiplied
by saturated thickness (L2/T);
Tci,j,k is the transmissivity along the column at cell i,j,k, and
equals the hydraulic conductiviity along the column

multiplied by the saturated thickness (LZ/T);
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m is the number of strata between cell centers in model layers

k and k+l1 that have different values of vertical hydraulic

conductivity;
Azg is the thickness of each of the m strata (L);
K is the vertical hydraulic conductivity of each of the m

g
strata (L/T).

m Az |-1
z E_g is the vertical leakance (1/T).
g=l'g

The volume of aquifer material that is accounted for by each of the

conductances is shown in figure 1.

Areal view of cells in layer k showing nodes at
cell centers:

- COLUMNS
J <ﬂ EXPLANATION
\ \ N AQUIFER AREA ACCOUNTED
. node n \\ \ node (n+1) m FOR BY CR,', J+1/2, k
/ hﬁq 7 AQUIFER AREA ACCOUNTED
" \ L/ FOR BY CCiy1p2, ) ¢
2 [ N = SIDE VIEW OF VOLUME
8 7 —— ACCOUNTED FOR BY CV; ; ¢,12
_ | i ROW
+1 [ Acjy
node (n+NC) j COLUMN
k  LAYER
YT YT
Ar; Arjyq NR NUMBER OF ROWS
NC NUMBER OF COLUMNS
Side view of cells in row / showing nodes at
cell centers:
- COLUMNS
J J+1
node n
n k ®
[a
E Confining unit
_Jk o
+1|  node (nsNONR)]

Figure 1.--Aquifer-system volumes accounted for by conductances

CRi,j+%,k’ cci+%,j,k’ and CV,

1]kt in the block-centered,
finite-difference method.
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If equation (1) is

:

A(n)h(n) = B(mh(n-1) - £(m)

written for each cell of

he resulting equations can be expressed in matri

a finite-difference grid,

[x form as:

3)

where h(n) is a vector of hydraulic heads at all grid points at the end

of time step n [L];

A(n) equals At%n) + K + B(n) [L2/T];

S is a diagonal matrix of specific storage multiplied by cell
volume, or specific yield multiplied by cell area [L2];

At(n) is the length of time step n [T];

K is a matrix of horizontal and vertical conductances [LZ/T];

g(n) is a diagonal matrix of conductances at head-dependent
boundaries [Lz/t];

B(n) equals ZE%;T [L2/Ti; and

£(n) is a vector of the Qi,j,k’3and is| sometimes referred to as
the forcing function [L7/T].

Of the matrices from which A and B are calc
components off the main diagonal. The structure
rows, three columns, and two layers is shown in

to denote row, layer, and column numbers. K is

components off the main diagonal occur on six of

components, ui j k'
sum of the off-diagonal components for that row.

+ CC cv

Y11,1 7Ry 11 14%,1,1 Y%V 11

+ CC

Y,2,0 7 Ry 1,1 Y OB o 144,2,1

The Parameter-Estimation Package can accomm

on the main diagonal of K ar

ﬁlated, only K has nonzero

;of K for a problem with two

figure 2, using subscripts

Qymmetric, and all nonzero

[ diagonals. The
calculated as the negative

For example:

TR

date confined or unconfined

model layers (LAYCON of the Block-Centered Flow Package=0 or 1), but is not

designed to accommodate convertible layers (LAYCON=2 or 3).

difference cells in water-table layers become i

simulated hydraulic head declines below the bott

Finite-
ctive (’'go dry’') when the

om of a water-table layer.

MODFLOW does not allow these cells to become active again within a single

12
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simulation (McDonald and Harbaugh, 1988, p. 5-9).

The Parameter-Estimation

Package, however, reactivates these cells at the beginning of each

parameter-estimation iteration (see chapter in

this report on nonlinear

regression for a discussion of parameter-estimﬁtion iterations).

Estimated parameters can be used to calcul]
in table 1.
input instructions (McDonald and Harbaugh, 198

These model inputs are the quanti

component of equation (3) in which each model

noted.

Table 1.--Model inputs listed in the MODFLOW
and Harbaugh, 1988; Prudic, 1989) that can |
estimated by using the Parameter-Estimation
equation (3) in which they occur

Jate the model inputs listed
ties listed in the MODFLOW
8; Prudic, 1989).

input is included also is

The

input instructions (McDonald
be calculated using parameters

Package, and the terms of

Model Inputs

Term in Equation (3)

Properties of model layers
Confined layer
Transmissivity!,?2

Storage coefficient!
Unconfined layer
Hydraulic conductivity?,?

Specific yield!
All layers
Horizontal anisotropy by layer!?

Vertical leakance between layers!?,?
Vertical anisotropy between layers
(used to calculate vertical leakance)!

Head-dependent boundary conductances
River Package!l
Streamflow-Routing Package!
General Head-Dependent Boundary Package!
Drain Package!

Maximum evapotranspiration
Constant-head boundaries
Stresses

Pumpage
Recharge

v IR

v IR

IR IR

I~

L)
~
IHh

P(n);£(n)
£(n)
£(n)

Parameters can be defined by a natural-log t:

of confined layers, hydraulic conductivity o
vertical leakance between layers.
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Parameterization
Although the ground-water flow model permits different model-input

values and, therefore, parameter values to be assigned to each model cell,
and many model inputs can equal different values at different time steps,
estimating this many values is impractical given the data available for most
problems. Decreasing the number of parameter values permits them to be
reliably estimated with the available data (the reliability of estimates is
discussed later in this report). 1In general, the number of parameter values
estimated needs to be a fraction of the number of hydraulic-head and

streamflow gain-or-loss observations used to estimate them.

The number of unique parameter values to be estimated can be decreased
by assuming that some of the values are known and by parameterization (Shah
and others, 1978). In parameterization, a few parameter values are used to
define the model-input values for many cells and time steps. Yager (1991)
provides an example for a transient, three-dimensional ground-water flow

system.

In the Parameter-Estimation Package, spatially varying values of model
inputs can be calculated from parameters using cell-by-cell multiplicative
factors, multiplication arrays, and zone arrays. Multiplication and zone
arrays are used only for model inputs that are read as arrays by MODFLOW
(McDonald and Harbaugh, 1988), which includes all ’'Properties of model
layers’ listed in table 1 except horizontal and vertical anisotropy, and

maximum evapotranspiration and recharge.

As an example for a model input that is not read as an array by
MODFLOW, consider the conductance of the River Package. The conductance for
a cell equals the hydraulic conductivity of the riverbed times the area the
river occupies within the cell, divided by the riverbed thickness (McDonald
and Harbaugh, 1988, p. 6-5). The Parameter-Estimation Package allows the
user to define a different multiplicative factor for each river cell
included in defining a parameter. Spatial variations in riverbed hydraulic
conductivity, area, and thickness, therefore, can be included in
multiplicative factors, and a spatially constant parameter value can be
estimated. If the riverbed hydraulic conductivity can be considered to be
constant for the cells, the parameter can be defined as being equivalent to

that riverbed hydraulic conductivity, and the multiplicative factors would

15



equal the area of the river in each cell divided by the riverbed thickness.
Alternatively, the initial estimates of riverbld conductance can be used as
the multiplicative factors, and the parameter value initially set to 1.0.
Then, any change in the parameter value would indicate the change in
riverbed conductance produced by nonlinear regression. For example, a value
of 0.50 would indicate a 50-percent decrease i‘ the riverbed conductance for

the included cells. \

As an example for a model input read as an array by MODFLOW, consider
the transmissivity of a confined model layer. [If it is reasonable to assume
that the hydraulic conductivity is constant, the parameter could be defined
as the hydraulic conductivity. The multiplicative factor times the
multiplication array would equal layer thickness; a zone array could be used
if the parameter only represented the hydraulic conductivity of part of the
layer. If it is known that the hydraulic conductivity is smaller in one
part of the layer, this could be represented bﬂ decreasing the elements of
the multiplication array in that area, or by iﬂtroducing an additional
parameter equal to the smaller hydraulic conductivity value. If the
geohydrology of the ground-water flow system indicates that the hydraulic
conductivity is applicable to parts of other model layers, they can be
included in the definition.

For model inputs read as arrays by MODFLOW, the model input can be
calculated as the sum of contributions from more than one parameter. As a
simple example, consider the situation illustrated in figure 3. Here, it is
assumed that the model input varies linearly along columns of the finite-
difference grid. This variation can be represented by assigning one
parameter to be equal to the model input value jat row 1, and another
parameter to be equal to the model input value at row 10. If the product of
all multipliers for the first parameter equals P.O at row 1 and linearly
decreases to 0.0 at row 10, and the product of all multipliers for the
second parameter equals 0.0 at row 1 and linearly increases to 1.0 at row
10, the desired variation and parameter definitFon is obtained. Note that
the values of parameters defined along the two rows of the grid are
interpolated to all cells. For two-dimensional variation, two-dimensional
finite-element basis functions (Segerlind, 1976) or kriging (Keidser and

others, 1990) can be used to calculate multiplication arrays that perform

16




the desired interpolation. For kriging, a fitted or assumed variogram is
used, and parameters can be defined as discussed in Appendix A. For three-
dimensional variation, three-dimensional finite-element basis functions
(Segerlind, 1979) can be used. Other interpolation techniques, such as
polynomial interpolation and cubic splines, can also be used.

T T T T T L T T T

------ Parameter 1

MODEL INPUT

PRODUCT OF MULTIPLIERS
FOR PARAMETER 1
[=]

FOR PARAMETER 2
5
>

PRODUCT OF MULTIPLIERS

ROW OF GRID

Figure 3.--Multipliers needed to define a discretized linear

variation in a model input using two parameters.
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The formulation provided for spatial parameterization allows a great
deal of flexibility in defining parameters. It is hoped that this will
allow users to define parameters that make the most physical sense in a
given situation, and to realistically represent spatial variability while
minimizing the number of parameters estimated. Note that any defined
spatial variability is assumed to be known, aﬁd all uncertainty is related
to the estimated parameters. If the spatial wvariability is not truly known,

which is common, the results of the nonlinear regression might indicate

The temporal parameterization permitted in the Parameter-Estimation

unrealistically reliable model results.

Package is limited to making parameter values equal for specified time
steps; the time steps can be from different stress periods and might or

might not be continuous. In a sense, this is zonation applied temporally.

Some estimated parameters can be redefin%d by a natural-log
transformation. Redefining the parameter in this way sometimes produces a
better-conditioned regression problem (Carrera, 1984), always ensures that
the parameter value remains positive, and, if the parameter is assumed to be
lognormally distributed, allows more convenient statistics to be used to
characterize the reliability of prior and final estimates. Hydraulic-
conductivity estimates commonly are considered to be lognormally distributed
because point hydraulic-conductivity measurements have been determined to be
lognormally distributed in some geohydrologic|situations (Davis, 1969, p.
76; Nielsen and others, 1973; Freeze, 1975; Neuman, 1982; Sudicky, 1986).

Some example lognormal distributions are| shown in figure 4.
Discussions of the lognormal distribution are| available in Benjamin and
Cornell (1970, p. 262-270), and Schmittroth (1979); the reader is referred
to these sources for its characteristics. Here, note that if K is a
lognormally distributed parameter, exp[E(4n K)], equals the modal value of
K, and exp[E(4n K)+a2/2] equals E(K), the mean of K, where 02 is the
variance of fn K. The exponential of confidence intervals on E(fn K),
therefore, are confidence intervals on the modal value of K, and might not
be symmetric about exp[E(4n K)]. The model imputs associated with
parameters that can be redefined by a natural-log transformation are noted

in table 1.
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Users who prefer 1og10 transformation can convert to log10 by
multiplying the log-transformed parameter value estimated by the Parameter-
Estimation Package by log,, e = 0.4342945. This is derived by noting that a

parameter, b, can be expressed as b = eln b. Then, 1og10 b=24nb 1og10 e.
10x10° I I
= [\/Gln y=0.1 —
2 5x10° —
N->'
B /cm y=1.0 7
Olp ¥= 0.472
L -
|
0 05 X 10° 1.0 X 10° 1.5 X 10°
y

Figure &4.--Lognormal distributions with the same mean showing
the effect of % oy’ where InY is a normally distributed random
variable. [Modified by Benjamin and Cornell (1970); used with

permission of the publisher.

OBSERVATIONS

Several types of commonly available observations of dependent variables
can be used to estimate parameters, including observations of hydraulic head
or temporal changes in hydraulic head at arbitrary times and locations,
observations of hydraulic head or temporal changes in hydraulic head
averaged over several model layers, and observations of gains and losses
along head-dependent boundaries, such as streamflow gains and losses. To
use these observations to estimaEe parameters by nonlinear regression,
corresponding simulated values, y, need to be calculated so that the
difference between observedAand simulated values can be evaluated and
minimized. Calculation of y for the differegt types of observations is
described in the following sections; use of y in nonlinear regression is
described later in tye text.

Calculation of y needs to be modified if water-table cells involved in

the calculation ‘go dry’. This problem also is discussed in this chapter.
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Hydraulic Head at One location Obgerved Over Time

Hydraulic heads can be observed for any time representc:,d by the

simulation. If the observation occurs within a time step, y is calculated
by linearly interpolating values calculated at the beginning and end of the
time step using TOFF, a coefficient specified by the user (Appendix A).
TOFF equals the time of the observation minus the time at the begimning of
the time step divided by the Iength of the time step. Use of TOFF is
illustrated in figure 5.

HYDRAULIC HEAD AT
ONE LOCATION

TIME STEP

EXPLANATION

¥ LINEARLY INTERPOLATED
SIMULATED HYDRAULIC HEAD

X TIME OF OBSERVED
HYDRAULIC HEAD

|
Figure 5.--Use of TOFF to calculate simulated values of hydraulic

heads observed within time steps by 11\+ear interpolation.
i

l
|
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Hydraulic heads observed at one location over time can be represented
in the Parameter-Estimation Package as hydraulic heads at each time of
observation, or as an initial hydraulic head followed by changes in
hydraulic head. The second representation permits some types of correlation
in the true errors to be accurately and easily represented, as described

later in this report in the section "Weighting Observations".

Hydraulic Head at Arbitrary locations

The finite-difference method calculates hydraulic heads at the center
of each active finite-difference cell within a layer. Observation wells,
however, rarely are located at cell centers and might not be screened
throughout the entire thickness represented by the model layer. In this
report, hydraulic heads are assumed to be equal through the thickness of
each model layer, so variations caused by limited screening of the
observation well within a layer are ignored. Simulated hydraulic heads at
observation locations are calculated by interpolating within the two-
dimensional plane of a single layer. Six locations (A-F) for which
hydraulic heads might need to be interpolated are shown in figure 6.
Location A is exactly in the center of a cell, so no interpolation would be
needed. Location E is exactly between two cell centers, so interpolation
using two hydraulic heads would be needed. Hydraulic heads at all other

locations would require interpolation using three or four hydraulic heads.

Exact interpolation of hydraulic heads is not always possible for the
finite-difference method described by equations (1) and (2) because
hydraulic properties that are defined for cells do not extend between
locations where hydraulic head is calculated. For example, interpolation
for locations C, D, or F in figure 6 could require as many as four different
hydraulic-conductivity values, and, for this complicated case, no exact

interpolation method is available.

Approximate geometric interpolation methods that exclude the variations
in hydraulic conductivity are available. In this report, geometric
interpolation based on linear, finite-element basis functions is used.
Linear one-dimensional basis functions (equivalent to linear interpolation)
are used for locations such as B and E in figure 6, which are adjacent to

two inactive cells or are exactly between adjoining cell centers; triangular
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basis functions are used for locations such as ¢ and F in figure 6, which
are within a triangle formed by the centers of three neighboring cells
because the fourth neighboring cell is inactive; and quadrilateral basis
functions are used for locations such as D in figure 6, which are within a
rectangle formed by the centers of four active cells. All basis functions
are calculated using local coordinates that are specified by the user and
define where the arbitrary location is within a cell relative to the
location of the cell center. These local coordinates are a row offset,
ROFF, and a column offset, COFF, and their use is illustrated in figure 6.
Note that ROFF is negative in the direction of decreasing row numbers, and

 COFF is negative in the direction of decreasing column numbers.

COLUMNS

1 j1 ] i | j+1
| | |

BENNHEW w}cﬁvé N
B} _,&\ N\ S\ coreng!

ROFF=-0.5 -0 I
.B Co

- —d__
1
I

|
(7] | |
S - ° COFF=-0.5 +A COFF=0.5
Q [
o« | |
| E |
— e D ROFF=0.5 °F
| <--
_ |
|
|
|

POINT _ ROFF COFF

A 0.0 0.0
B -0.25 -0.25
C -0.25 0.4
D 0.5 -0.5
E 0.25 0.0
F 0.4 0.25

Figure 6.--Locating points within a finite-difference cell
using ROFF and COFF.
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The basis functions used are described in numerous texts and are not
discussed in this report. They are equivalent to the one-dimensional
simplex, two-dimensional simplex, and quadratic-element basis functions of
Segerlind (1976, p. 24, 28, and 258), and the triangular "archetypal” and
rectangular-element basis functions of Wang and Anderson (1982, p. 119 and
153). Wang and Anderson (1982) do not discuss a linear, one-dimensional

basis function.

Errors introduced by using geometric interpolation might become
substantial when the hydraulic properties of neighboring cells are different
and cell dimensions are large. At such locations, the differences between
observed and simulated hydraulic heads might be inaccurate and could produce
inaccurate parameter estimates. This problem would be characterized by
larger than expected differences between observed and simulated hydraulic
heads.

Although this section only discusses observed hydraulic heads,
identical procedures are used when an initial hydraulic head followed by
temporal changes in hydraulic head are used.

Multilayer Hydraulic Heads

If an observation well is screened over intervals that represent more
than one model layer, and the observed hydraulic head or change in hydraulic
head is affected by all screened intervals, then the associated simulated
value is a weighted average of the hydraulic heads or changes in hydraulic
head calculated for each of the layers involved. The simulated value is
calculated by multiplying the hydraulic head or change in hydraulic head in
each layer by a user-specified proportion and then summing the results, as
shown in figure 7. A more realistic representation of this problem would be
produced by calculating the proportions based on the flow-system and aquifer

characteristics, but the Parameter-Estimation Package does not do this.

Interpolation for multilayer hydraulic heads can be complicated because
neighboring cells can be active or imactive, depending on the layer. In the
Parameter-Estimation Package, the interpolation is defined using the IBOUND
array (McDonald and Harbaugh, 1988, p. 4-2) of the first layer listed for
the multilayer hydraulic-head observation (see DATA SET 6A of the INPUT
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Ground surface

Model Layer 1

Model Layer 2 h,
Model Layer 3 h;
Model Layer 4 h,

A
Y=pzh; + pshz + pshy

h,, hs, and h, are calculated hydraulic heads at the
observation location in layers 2, 3, and 4.

P2, P3, and p, are proportions defined by the user.

Figure 7.--Calculating the simulated value

multilayer observation well.
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FILE, Appendix A). Thus, for each neighboring cell that is inactive in any

of the other model layers, the cell in the same row and column in the first

layer listed needs to be active. If no one layer contains a complete set of

inactive cells, correct interpolation cannot be accomplished. This is
illustrated in figure 8.

(A) (B)
Model Layer 2: Model Layer 2:
/, /,
7/ GH
. X . . x L]
EXPLANATION

[ - ] AcTivecewL
¥'/./)| INACTIVE CELL

Model Layer 3: Model Layer 3:
X  OBSERVATION

LOCATION

///AX. ////./AX.

Model Layer 4: Model Layer 4:

//////X. R

Model layer 4 has inactive cells that
correspond to the inactive cells in all
other layers, and is listed first in
data set 6A.

No one layer has inactive cells that
correspond to the inactive cells in all
other layers.

Figure 8.--Situations that do (A) and do not (B) produce correct
spatial interpolation for multilayer hydraulic-head observations.
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Head-dependent boundaries correspond to, for example, rivers, drains
and lakes, and can be simulated using the River, Drain, or General-Head
Boundary Packages (McDonald and Harbaugh, 1988, ch. 6, 9, and 11), or the
Streamflow-Routing Package (Prudic, 1989). Flows into or out of any part of
a head-dependent boundary for which gains and losses have been observed are

calculated as:

A NQCL NQCL Ki
| y = 1§1 c,q; = ifl c; BEAi(Hi-hi), (4)

where NQCL is the number of finite-difference cells (number of reaches for
the Streamflow-Routing Package) used to simulate that part of
the boundary;

q. is the simulated flow rate at one cell (L3/T) (negative for flow
out of the aquifer);

c is a user-defined multiplicative factor;

is the cell hydraulic conductivity (L/T) of, for example, the

riverbed or lakebed;
D is the cell thickness (L) of, for example, the riverbed or

lakebed;
Ai is the area of the water body within| the finite-difference cell
2, .
(L)! |
h; is the simulated hydraulic head in the ground-water system
adjacent to the head-dependent boundary (L); and
H is the water level in the water body| or the elevation of the

i
drain. .
The observed equivalent of y, y, would equal Q2 Ql’ as shown in figure 9A;
the related components of equation (4) are shown in figures 9A and 9B.
Generally c, = 1.0. However, if Ql or Q2 or both are located within a cell
instead of the edges of the cells as in figure 9A, c; needs to be less thfn

1.0 so that only part of the flow calculated for the cell is included in y.
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(A)

COLUMNS
J J+1 j+2 j+3
i-1
Q
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/] ,
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% i+1
o A /, /
//
+2 \82
i+3
(B)
o [ ) h o
n
EXPLANATION
” ONE OF THE NQCL CELLS REPRESENTING D THICKNESS OF THE WATER-BODY BED WITHIN
A THE REACH BETWEEN Q4 AND 02 IN THE MODEL n THE FINITE-DIFFERENCE CELL
/02 GAGING SITE H HYDRAULIC HEAD ON THE CONSTANT-HEAD
n SIDE OF THE HEAD-DEPENDENT BOUNDARY
A AREA OF THE WATER-BODY BED WITHIN h CALCULATED HYDRAULIC HEAD FOR CELL n
n THE FINITE-DIFFERENCE CELL n

Figure 9.--Representation of head-dependent boundary gain and loss

observations: A, gaging sites and cells used to represent the reach

between gaging sites in the model; and B, quantities used to calculate
the simulated gain or loss.
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There are exceptions to equation (4) in some of the model packages. In
the River and Streamflow-Routing Packages, if hi declines below the bottom
of the riverbed or streambed, the flow at cell i is calculated as (figure
10A and 10C):

K,

where Ei is the elevation of the bottom of the streambed. In the Drain
Package, if hi declines below the bottom of the| drain, qi-O (no flow is
simulated between the ground-water system and the drain, as shown in figure
10B). The Streamflow-Routing Package also has the exception that if the
calculated loss from a reach exceeds the flow into that reach, the loss is

set equal to the flow into the reach.

The exceptions noted above result in the elimination of hi from the
calculated head-dependent boundary gains and losses, and decrease the
importance of the observed gain or loss to the estimation of parameters. In
the extreme, an observation might have no affect on parameter estimation, in
which instance the observation is omitted for the parameter-estimation
iteration being executed. Messages are printed in the output from the
Parameter-Estimation Package when the exceptions listed above occur and when

an observation is omitted.

When the hydraulic head at a cell in a water-table layer declines below
the bottom of the aquifer, the cell is designated as inactive and remains
inactive through the last time step (McDonald and Harbaugh, 1988, p. 5-9).
Such cells are said to ’‘go dry’. At a dry cell, hydraulic head is not
calculated, and the cell cannot be used to calculate simulated hydraulic
heads or head-dependent boundary gains and loss¥s for the parameter-
estimation iteration. For head-dependent bound#ry reaches this generally
poses little problem because cells along the reaches do not tend to go dry
as often as other cells. When they do go dry, these cells usually account
for only a fraction of a reach. No special provisions have been made in the
Parameter-Estimation Package to account for cells going dry along head-

dependent boundary reaches with observed gains or losses.
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EXPLANATION

A. q
’ q, CALCULATED FLOW
K. CELL HYDRAULIC CONDUCTIVITY
Positive q; ! FOR HEAD-DEPENDENT BOUNDARY
:c\llrxilfgtro o \Slope= —pt A A, AREA OF WATER BODY
| OR DRAIN IN THE CELL
, h; CALCULATED HYDRAULIC HEAD
| IN THE MODEL LAYER
0 ' hi  E, BOTTOM OF STREAMBED
: ! H, ELEVATION OF WATER BODY
. ! OR DRAIN
Negative q; | |
indicates \ \
flow into
aquifer ! !
! I
| \ B.
! I -q;
! I
E; H;
Negative q;
C. indicates !
q; flow into
drain
Positive q;
indicates
flow into )
aquifer .
Flow into K; o
reach may : Slope = —5 A
_limit flow ' !
into aquifer I
O ! h,‘
! I
! 1
! I
Negative q; ! |
indicates | |
flow into .
stream | :
!
! I
L I
E H;

Figure 10.--The dependence of simulated gains and losses on hydraulic
head in the model layer (h i) in: A, the River Package, B, the Drain

Package, and C, the Streamflow-Routing Package.
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Problems are more severe when cells go dry at or adjacent to hydraulic-

head observation locations.
figure 11.

There are three types of problems, as shown in

First, if the observation is single layer and an adjacent cell

which is used in the interpolation method discussed earlier goes dry, the

dry cell usually can be omitted from the interﬁolation without introducing

too much error into the interpolated value.

This procedure was adopted in

the Parameter-Estimation Package. Second, if &he observation is multilayer

and cells used for interpolation in one or more layers go dry, the

proportions used to weight the hydraulic headsifrom those layers probably

are no longer valid.

Although the cells could be omitted from the

interpolation for the layers involved and a simulated hydraulic head

analogous to the observed value could be calculated, the problem with the

proportions can not easily be resolved.

In the Parameter-Estimation

Package, multilayer observations for which any cells used in the

interpolation go dry are omitted from the parameter-estimation procedure.

Tﬂird, if the observation is single layer or

containing the observation location goes dry i

the observation is omitted from the parameter-éstimation procedure.

ltilayer and the cell

any of the layers involved,
The

effect of omitting the observations for the laFt two situations is that the

impetus for changing the parameters to keep th
This loss

point, no practical alternative exists.

the parameter-estimation procedure.

As discussed previously in the section "G
the Parameter-Estimation Package reactivates a
of each parameter-estimation iteration, so tha

and number of observations are reinstated.

Omitted Observatio

If observations are alternately used and
successive parameter-estimation iterations, wh
head observations in water-table layers that g
boundary gain and loss observations, parameter
(see the section "The Sum-of-Squares Objective
Problems" for a discussion of parameter-estima

convergence). This problem can be addressed i
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Observation

location \
1. \ 2.

X

Situation 1: Single-layer simulation; cells 2, 3, and(or) 4 go dry;
recalculate interpolation.

Situation 2: Multilayer simulation; cells 2, 3, and(or) 4 go dry
in any layer; omit observation from parameter-
estimation procedure.

Situation 3: Single or multilayer simulation; cells 1 goes dry

in any layer; omit observation from parameter-
estimation procedure.

Figure 1l.--Effect of dry cells on calculated hydraulic head at an

observation location.

1. Eliminate the omitted observations during initial parameter
estimation iterations or early in the calibration process, and try
including them later when the parameter estimates are closer to the
final values or the model is closer to its final form.

2. A water-table layer can be simulated as a confined layer using
estimated layer thicknesses early in the calibration process, and
represented as a water-table layer later when the parameter
estimates are closer to the final values or the model is closer to
its final form.

3. For head-dependent boundary gain-and-loss observations, small
streambed or riverbed thicknesses can aggravate the problem.
Increase these thicknesses if such a change is realistic.

4. Review the method used to represent the ground-water flow system
and make changes if needed. This is the same process that a
modeler goes through in a trial-and-error calibration, and its goal
is to ensure that the physical system is being represented
realistically. Unrealistic representations cause problems in
nonlinear-regression parameter estimation just as they cause

problems when calibrating by trial and error.
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REVIEW OF PARAMETER ESTIMAT

ION AND

ANALYSIS OF RESULTS USING LINEAR REGRESSION

A brief review of linear regression is inc
framework within which to present the concepts.
brief, extensive discussions are available in D
Cooley and Naff (1990), from which much of the
condensed. For the less advanced reader, Ott (

elementary discussion.

luded to provide an easier
Although this review is
raper and Smith (1981) and
following discussion is

1988) provides a more

Assumed Linear Mode
In any type of regression procedure, a model structure needs to be

assumed.

linear function of the parameters.

true process is a linear function of the parameters.

Y = ByXy + Byxy + cce 4 BupXp

In linear regression, the assumed model can be expressed as a

This assumed model is correct if the

For example,

(6)

where y is the true calculated dependent variable (analogous, for
example, to hydraulic head in the ground-water flow
equation);
NP is the number of parameters;
ﬂlﬂzo--ﬂNP are true, unknown parameter values; and
Xq1Xy* e eXyp are independent variables (analogous to spatial dimensions

These

ent variables in some

and time in the ground-water flow equation).

E

might be functions of depen
applications.

The parameters ﬂl,ﬂzcoo are unknown, but can be estimated from

Pyp

observations, yq, which are observed at different values of the independent

variables. The data would be as follows:

(7

eeeX

(po%y 10%q 2000 % yp)» U0%p 1%9 2 NP

*** ('yp’*ND,1°*ND,2°* “*ND, NP

2

where the added subscripts indicate the sequential number of the

observation, and ND is the total number of observations. Note that the

first subscript on each independent variable, x is the observation

1’
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number, and the second is the number of the parameter it multiplies. These
data can be substituted into the model (eq. 6) to produce ND equations of
the form

y, = yq + eq - ﬂlxq,l + ﬂ2xq,2 + ."ﬂNqu,NP + eq q=1ND (8)

q

where L is the difference between observation yq and the surface predicted

by the true model, and is called the true error or disturbance.

The ND equations of (8) can be expressed using vectors and matrices as:

Y-X8+¢ (9)
where
r 3 - L ]
41 31,1 *1,2 X1, NP 2
y-4% t, x=-[%1 %2 0 Xw|, g-{f },
; j X : ﬂNP
. YND *ND,1 *ND,2 +-.  *ND,NP]
a €1 N
5_-4 € L.
L GNDJ

The elements of ¢ are assumed to be random variables, and the validity
of the regression procedure depends on their statistical properties. It is
generally assumed that (1) E(¢) = 0, so that the model is unbiased (Benjamin
and Cornell, 1970, p. 380) and (2) the variance-covariance matrix of the
errors is V(e) = 1 02, so that the elements of ¢ are uncorrelated and have
equal variances (Draper and Smith, 1981, p. 108). Violations of the second
assumption need to be accounted for by using a weight matrix, as discussed

in the section "Weighting Observations".
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The goal of regression is to determine estimates, b, of the true,
unknown parameter values, 8, so that an assumdd model that approximates the
true model produces calculated values, ;q' at |the observation points q,
which are similar to the measured values, Yq 8s measured by an objective
function. Replacing g with b in equation (9) yields:

A

y=Xb+e=y+e (10)

A

where y is a vector of calculated values of y and e is a vector of
residuals. The variable ¢ is used instead of ¢ to clearly indicate that the
components of e are not true errors. The ele‘ents of e are random variables
and have statistical properties that are consistent with the statistical
properties of the elements of ¢ if the assumed model is similar to the true

model.

Two objective functions commonly are used in ground-water flow
parameter-estimation problems, but both reduce to the sum-of-squares
objective function for any single run of the parameter-estimation procedure.
The maximum-likelihood objective function is discussed in the section
"Parameter Estimation and Analysis of Results Using Nonlinear Regression".

|

The sum-of-squares objective function is defined as:

ND A
z [y,-y.]
=1 9°4

S(b) 2

+ b,Xx .+ °*¢ + b

q 27q,2 (1)

2
np¥q,Np) ]

'
™M
<
'
~
o
[
b
[

where S(b) is a scalar, and e is the vector of residuals. A regression
problem solved using a sum-of-squares objective function is called a least-

squares regression problem.
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A plot of a sum-of-squares objective-function surface for a problem
with two parameters, b1 and b2, is shown in figure 12. For linear problems,
the contours are elliptic, and the minimum S(b) value usually is well-

defined and unique. The parameter values that produce the minimum

objective-function value can be calculated by solving 3S(b)/8b = 0, which is
equivalent to:
3as(b) 3s(b) as(b)
=0, =0, coeee = 0. (12)
8b1 ab2 abNP

The minimum is called a stationary point because all the derivatives in
equation (12) equal zero. Objective functions of nonlinear models can have
other types of stationary points, such as maxima or inflection points
(Hildebrand, 1976, p. 356-362), or relative and absolute minima. Various
kinds of stationary points, in addition to alternative terminology that
commonly is used to describe them, are shown in figure 13. A problem with a
well-defined, unique minimum and no other stationary points on the
objective-function surface is said to be well-conditioned. Although this
concept can be graphically displayed only in a one- or two-dimensional

parameter space, it applies for any number of parameters.

b,

!

Figure 12.--Sum-of-squares objective-function surface for a linear problem
problem with parameters b1 and b2 (modified from Himmelblau, 1972, p. 80;
used with permission of the publisher). .
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b,

Figure 13.--Stationary points on an objectiqe-function surface, labeled
using common terminology (modified from MdLaughlin, 1975, p. III-4).

In linear regression, the sensitivities, !whifh are defined as the
derivative of the calculated dependent variab]le, y, with respect to the
parameters, are required to calculate the b tﬂat satisfies equation (12).
The linear model is easy to use because the sensitivities are indépendent of

the parameter values. From equation (6):

' al— - X Qy—- - X XK} &L - (13)
9y, = 11 a8, T T2 3Byp NP
Substituting the parameter estimates, b, for the true parameters, g,
sensitivities at observation-point q equal:
dy 3y ay
—9 . x , —4 . x , eee — L x . (14)
abl q,1 8b2 q,2 abNP q,NP
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Note that X of equations (9) and (10) is a matrix of sensitivities, and
for linear problems simply equals the values of xq,l' xq’z, sse_ When the
model is nonlinear in the parameters, such as in most ground-water flow
problems, X is still a matrix of sensitivities and has the same function in
the following equations. The sensitivities, however, are not as easy to

calculate and they are dependent on the parameter values.

To proceed, consider a linear problem with a two-parameter model
equation, and xq,l-l’ q=1,ND, so the assumed model is a straight line with
intercept b1 and slope b2' Equation (12) can be solved to produce the
following well-known equations, called the normal equations, for b2 and b1:

Zx_ L,y - [(Bx_ ,)(Zy )]/ND
b. = q.2’qg q.2 q ’ (15)

2 2 2
Pq,2 T (g 9 /NP

bl - (zyq)/ND - bz(zxq’z)/ND’
where the summations are for the ND observations.

Using the matrix notation of equation (9), equation (15) is the solution of:

T

Xxb-%y (16)

where, for the simple linear problem with two parameters,

1 x1,2
X= |1 %,
L xyp ol
Then,
[ND =X,
_T_" ox 2(:' y2| » and
[77q,2 q,2
[ 3y
X'y = 1,
2%q,2Y

vhere, again, the summations are for the ND observations. By using these

definitions, it can easily be verified that equations (15) and (16) are
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equivalent. Regardless of the dimensions or limearity of the problem, all
least-squares regression problems are solved uiing normal equations of the
form of equation (16).

Weighting Observations
If the observations used in a regression jnalysis are (1) not equally

reliable, (2) have different units, or (3) hav

correlated, it cannot be assumed that the true errors have the statistical

true errors that are

properties required to produce a valid regression even if the assumed model
is correct--that is, although E(¢) = Q0 is still valid, it cannot be assumed
that the variance-covariance matrix of the true errors 2(;), satisfies 2(;)
- laz (Draper and Smith, 1981, p. 108). As a result, the residuals used in

the regression procedure need to be weighted. |

Before proceeding, consider the three conditions for which weighting is
required and the function the weights have in the regression for each of
these conditions. Observations might not be equally reliable if, for
example, they are observed with varying degree§ of accuracy. In ground-
water flow problems, this variability might occur if the elevations of some
observation wells were determined by standard surveying methods to within a
few hundredths of a foot, whereas the elevations of other observation wells
were determined by an altimeter or from a topographic map to within a few
feet. When performing regression with such obéervations, it is more
important for hydraulic-head residuals to be smaller at locations with more
accurate elevations than at locations with less accurate elevations, and
weights are assigned that indicate this variation in importance.

Observations have different units if for example, both hydraulic heads (L)
and streamflow gains and losses (L /T) are observed. Weights are used to
indicate that a difference of, for example, between the observed and
simulated values for the two types of observations are not equivalent, to
indicate variations in observation accuracy, or both. True errors would be
correlated if, for example, hydraulic head at the same well was observed at
many times, and errors in determining the elevation or position of the well
were common to all observations. Weighting then is used to indicate that

the errors associated with those observations are correlated.



It is important to note that model error generally cannot be repre-
sented in the weight matrix. If the form and affect of model error can be
evaluated, the data can be adjusted accordingly. For example, if a well
penetrates only part of a pumped aquifer and the entire aquifer is
represented as a model layer, the affects of partial penetration can be
evaluated and the observations corrected to reflect full penetration. As
the estimated transmissivity near the well changes during the calibration

process, the correction can be recalculated.

Structure and Use of the Weight Matrix
Weighting is implemented by using a symmetric weight matrix, w, that
ideally would be calculated from the variance-covariance matrix of the true

errors, V(e), as:

w = o2 [V, a”n
where 02 is the user-defined common error variance of the true errors (see
below). In practice, V(e) is unknown. ItsAestimate, V(¢), is estimated by
the user, and the estimated weight matrix, w, is calculated from V(¢) as in
equation (17). 1If w approximately equals w, the weighted true errors

satisfy the desired conditions, E(gﬁg) = 0 and 2(9*5) - laz. If, in

addition, the model is correct, a2 approximately equals the estimated error
variance, sz, which is calculated as the minimized value of the objective
function divided by ND-NP (divide by ND+NPR-NP if there are prior parameter
estimates; see "Prior Information on Estimated Parameters"). The square
root of s2 is called the standard error of estimate (Draper and Smith, 1981,
P. 207). Discrepancies between 02 and 52 indicated an incorrect model, an
incorrect weight matrix, or biased observations; see "Adjustments Commonly
Required During Parameter Estimation".

In weighted least-squares regression, the weighted residuals, é*g,
replace the unweighted residuals, e. The weighted residuals might be
dimensionless or might have the units of any of the dependent variables,
depending on how the modeler defines 02. The weighted sum-of-squares

objective function (eq. 11) is:

s - ef@)T e - et we. (18)
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The weighted normal equations (eq. 16) are:

xfoxb~x

¥ (19)

1€ >
1€ >

If all observations have the same units (for example, if all
observations are hydraulic heads), the user can define a 02 such that the
variance-covariance matrix of the true errors can be expressed as:

V() = o%u, (20)

where W is an ND by ND matrix and either 02 or W is dimensionless. Then, by
equation (17):

w=o2tuly -wl (21)

The estimated matrix, w, would be of the same form. In this situation, the

weight matrix and, thus, the parameter estimates produced by the regression

routine are independent of the common variance, and the criterion that 02
=~ 82 is always satisfied. If W is considered to be dimensionless, the units
of the weighted residuals are the same as the units of the observations.

If there are observations with two differ#nt kinds of units (for
example, if hydraulic heads and streamflow gai+s and losses are observed)
and if it is assumed that the true errors of tﬁe two kinds of observations
are statistically independent (this will be di

"Simplifying Assumptions"), the variance-covariance matrix of the true

cussed in the section
errors can be expressed as:

2
Vo,

1o

¥(e) = 0 Zo

2|, (22)
£

where W aﬁ is the variance-covariance matrix of errors in observed hydraulic
heads and temporal changes in hydraulic head (gh), and Z ag is the variance-
covariance matrix for errors in observed head-dependent boundary gains and
losses (gf). Generally, 02 is defined to be equal to either aﬁ or a% or
1.0. If 02 equals 02, the weight matrix equal‘:
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- 2wen™t - 2 |. (23)

1€

10

Again, the estimated matrix, o, would be of the same form. The weight
matrix and the parameter estimates produced by the regreséion routine are
affected by the ratio aﬁ/a%, and, if W is dimensionless, the weighted
residuals have the same units as the hydraulic-head observations. If a% is
defined as the common error variance, the ratio a%/aﬁ affects the regression
routine, and, if W is dimensionless, the weighted residuals have the same

units as the head-dependent boundary gain-and-loss observations.

If o2 is set equal to 1.0 and is dimensionless, w = [!(g)]-l, and the
residuals are dimensionless. In this situation, if the model and Y(g) are

correct, 52 is close to 1.0.

If the true errors are all uncorrelated, the nonzero entries in V(e¢),
and therefore in w and é, occur on the diagonal. A diagonal weight matrix
is conceptually and computationally simple, and only diagonal weight
matrices are allowed in the Parameter-Estimation Package. However, a data
transformation described in the following sections can be used so that some

types of temporal correlations of the true errors can be included.

Estimation of the Variance-Covariance
Matrix of the True Errors
In transient ground-water flow problems, various dependent variables
might be observed at many locations, and they might be observed at many
times. The most general variance-covariance matrix of the true errors would
include the following correlations: (1) Correlations between errors in
observations made at different locations at the same time; (2) correlations
between errors in observations made at the same location at different times;
and (3) correlations between errors in observations made at different
locations and different times. Such a matrix would be impossible to
estimate accurately, and laborious to estimate at all. Fortunately,
assumptions about the true errors that are realistic for many circumstances

can be made to simplify this variance-covariance matrix. Seven assumptions
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I

that result in a simple diagonal weight matrix
further defined and discussed in the following
is noted in both parts of the text. This set

They are presented so that one set of assumpti
The

error and model error is included in the discu

weight matrix can be thoroughly analyzed.

plague the development of ground-water flow mo
1. True error includes measurement errors and
errors.,
* Required for a valid regression
2, Errors of different kinds of dependent var
» Commonly realistic for measurement err
3. Errors of observations at different locati
» Commonly realistic for measurement err
4, Time-dependent deterministic components of
be ignored.
» Commonly realistic for measurement err
5. At each observation location, total error
€1+€2+€3.
€, = errors that are constant over time
€, = errors that are temporarily correlate
correlated like ¢

1

€, = errors that are temporarily uncorrela

3- Probably realistic
6. Errors are normally distributed.
» Probably realistic
7. Either €] OF €, O €, errors dominate.

+ Commonly questionable

Simplifying assumptions

are listed below and are
section.
of assumptions is not unique.
ons leading to a diagonal

role of both measurement

sion because both commonly
Zels.

generally excludes model

iables are uncorrelated.
ors

ons are uncorrelated.

Trs
the error are small and can

OrSs

for any observation =

d, but not completely

ted

Their validity also

The first assumption is that the error includes measurement errors and

generally excludes model errors. The sum of all measurement errors equals
the eq of equation (8); model errors are any errors that could be corrected
by changes in the model given greater computer capacity, more time, or more
complete information about the ground-water flow system. Measurement errors
include, for example, errors in the elevation of observation wells and

errors in observed streamflow. Model errors dre caused by, for example,
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inaccurate interpolation of calculated hydraulic heads and other problems
discussed in the section "Observations" of this report, inability of the
model to represent ground-water flows or fluctuations in ground-water
properties that are smaller than the grid size, and parameterizations that
artificially limit the spatial or temporal variability of parameters. The
restrictions of the last example generally are necessary because only a
limited number of parameters can be estimated, but they do produce model
errors. The first assumption is required for a valid regression, and one of
the goals during calibration is to reduce model error as much as possible.

Model error generally cannot be accommodated using the weight matrix.

The second assumption is that errors in different kinds of dependent
variables are uncorrelated. This is the assumption that was made to produce
the weight matrix of equation (22), and indicates, for example, that errors
in observed hydraulic heads are independent of errors in observed streamflow
gains and losses. This assumption is realistic for measurement errors; for
example, it is unlikely that errors incurred when observing hydraulic heads
are related to errors incurred when observing streamflow. This assumption,
however, might not be realistic for model errors; for example, simulated
hydraulic heads and adjacent simulated streamflows generally would be
affected by the same deficiencies in the model, and associated model errors

would be correlated.

The third assumption is that errors in observations at different
locations are uncorrelated. As with the second assumption, the third
assumption is realistic for most measurement errors, but might not be
realistic for model errors, especially at locations that are close to one
another (Carrera, 1984, p. 37-39). One exception occurs for measurement
errors of head-dependent boundary gains and losses when one flow measurement
is used to calculate more than one gain or loss. For example, if flow is
measured at three progressively downstream locations as Ql’ Q2, and Q3, the
gain or loss measurements will equal Q2-Q1, and Q3-Q2. If the errors in Ql’
Q2, and Q3 are independent, normal, and have variances equal to 911 99
and Oqs the error in Q2-Q1 has a variance equal to ai + ag, the error in Q3-
Q2 has a variance equal to 95 + ag, and the covariance between the two gain-

and-loss measurements equals -0y
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If valid, the result of the second and thir
correlations are eliminated except for the tempo

location.

b assumptions is that all

*al correlations at each

The fourth assumption is that time-dependent deterministic components

of the error (Brockwell and Davis, 1987, p. 15)
ignored. Such components are more typical of mo
error, so the fourth assumption probably is real

errors.

The fifth assumption is that the remaining

errors, which are temporal, can be categorized b

Bre small and can be
del error than measurement

istic for measurement

correlations of the true
y thinking of the error

associated with each observation at a single time and location as the sum of

three statistically independent types of errors:
€ = 61 + 62 + 63,

where, € is constant for all time for each obse
temporal correlation coefficients be
errors associated with observations

location equal 1.0;

€2

(24)

rvation location, so the
tween this error and the
%t other times at this

varies with time and has correlation ﬂoefficients between this

error and the errors associated with observations at other times

at this location between 0.0 and 1.

| [ ]
, exclusive; and

€4 varies independently over time and has correlation coefficients

between this error and the errors associated with observations

at other times at this location equ
Examples of observations with these types of err
Considering their definitions, the assumed indep
realistic, and this method of characterizing err

]

all ground-water flow models. The autocorrelat
by Sadeghipour and Yeh (1984), Carrera and Neum
Watson and others (1990a,b) would be classified
and others (1988, p. 675) introduced a constant
describe spatial correlations of errors in an eg

field.
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1 to zero.

ors are shown in figure 14.
endence of €1, €9, and €q is
ors probably is valid for

d temporal errors considered
n (1986a, p. 203), and
as ¢,, as defined above.
to

Lu

error similar to €

timated transmissivity
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Processes that are likely to produce the three error types are
different for measurement errors and model errors. For measurement errors,
€ might be the error in the measured elevation|of the well; €, might be an

autocorrelated error in the recording device; and €y might be random,
uncorrelated inaccuracy in the recording device. From a practical
viewpoint, € and €4 errors probably dominate measurement errors. For model

errors, €y might be the error produced because constant pumpage at a well

' near the observation location is not accounted for in the model; € might be

the error produced because the parameterization|of transmissivity is not

realistic; and ¢, errors probably would be small or equal to zero.

3

When written for a series of observations over time at an arbitrary

observation location £, equation (24) becomes:

(25)

[3 - €

£p= &t e

22 ¥ &3

where the length of each vector equals the number of temporal measurements
at observation location £. If only temporal correlations are nonzero and

the observations are ordered by location, V(e¢) is a block-diagonal matrix

with the size of the blocks equal to the length of the vectors in equation
(25), which might be different for different locations.

The variance-covariance matrices associate# with the € and €5 errors
have structures determined by their definitionsL V(ill) is a matrix with
all elements equal to the variance of the error, Thus, V(e 2) - 1 al!’
where 1 is a matrix of ones and ail is the error variance associated with
observation location £. 2(512) can be simplified if changes in the
dependent variable over time are used in the regression instead of the
actual values. For example, if hydraulic head 1s observed multiple times at
one location, the first observation would be the initial hydraulic head, and
subsequent observations would be changes from that initial hydraulic head.
Because the €, error is considered to be constant over time, it would be
included only in the initial observation; the sybtraction would eliminate
this error from subsequent observations. Thus, by this simple

transformation, 2(512) would have one nonzero variance equal to a%z

associated with the first observation at observation location £, and all
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other variances and covariances in the matrix would equal zero. To invert
this matrix to calculate w, the zero diagonal elements would have to be

replaced by small, nonzero values.

2(532) is a diagonal matrix because the €4 errors are uncorrelated.
If, in addition, these errors are thought to have the same variance, !(532)
=1 agz, where I is the identity matrix and a§£ is the error variance.
Under the transformation discussed above for €, errors, !(531) becomes more

complicated. The variance associated with the first observation at
observation location £ remains unchanged, but the covariances associated

with the first observation equal -agz, all other covariances equal 02 and

32
2

all other variances equal 2031.

The variance-covariance matrix of the €, errors depends on the
correlation between the errors. If the correlation can be expressed by an
autoregressive process (Brockwell and Davis, 1987, p. 79) and the
observations are made at equally spaced times, differencing can be used to
produce an independent set of observations and a diagonal variance-
covariance matrix. Sadeguipour and Yeh (1984) use differencing of a one-
step autoregressive process and apply it to parameter estimation in a

ground-water flow problem.

The sixth assumption is that the sources of error are numerous and
varied enough that, by the central-limit theorem (Benjamin and Cornell,
1970, p. 251-253), the joint probability distribution function (pdf) of the

errors of equation (25) are normal, so:
€9 ~ NIO, Y(e] = NIQ, Ulg ) + Ule,,) + U(ey ], (26)

where ~ means "distributed as", and the three variance-covariance matrices
are summable because of the assumed normality and independence of €190 £9p>
and £qp- By using the expressions for !(512) and !(531) described above
(assuming all €4 errors have the same variance), the joint pdf can be

expressed as:
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2 2
L N[O, _]; 912 + !(522) + l 0321- (27)

The sixth assumption probably is realistic for all ground-water flow
problems.

If changes in the dependent variable were considered, 1 aiz would be
simplified further, but I a§£ would become mor complicated, as discussed
above. If a§£ is small compared to 01y @0 ap roximate diagonal matrix with
the first variance equal to 27 and variances for subsequent observations
equal to 20%2 can produce valid regression results. If €, errors are
important and autoregressive, and the times between observations are
constant, differencing methods can be used to make 2(522) diagonal.

However, !(512) and 2(132) would then become ere complicated.

The seventh assumption is that either €, Pr €, Or €, errors dominate,

and if €, errors dominate, the errors are autoregressive and the time
between observations is constant. Although, as discussed above, it could be
argued that €, errors generally are a small part of the total measurement
error, the assumption that one type of error dominates is questionable under

most circumstances.

If all seven assumptions are valid, no flow observations are uséd to
calculate more than one head-dependent boundary gain or loss, and the
appropriate transformation is used, the variance-covariance matrix and,
therefore, the weight matrix is diagonal. Thi% structure is advantageous
computationally and because the effect of a diggonal weight matrix on

parameter estimation is easy for users to understand.

In practice, the seventh assumption is most likely to be violated.
Violation of the seventh assumption means that| more than one classification
of error is significant and off-diagonal terms| in the weight matrix are

needed.
Estimation Procedure

For a diagonal variance-covariance matrix, the quantities that need to

be estimated for each observation location are aiz and the diagonal elements
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of 2(532) or, if the €4 errors are assumed to have equal variances, agz. If
aii » 0.0, aiz is only applied to the first observation at location £, and
subsequent observations need to be calculated as the change from the first
observation. If only one observation is made at an observation location,

Y(glz) and 2(532) are scalars.

2
Estimation of 2y

over time. For example, perhaps the elevation of an observation well was

is based on knowledge of errors that are constant

determined by an altimeter and is considered to be accurate to within 3 ft.
To estimate a%z, this statement needs to be quantified to, for example, the
probability that the true elevation is within 3 ft of the measured elevation
is 95 percent. Using the sixth assumption--that the £
distributed--a table of the cumulative distribution of a standardized normal
distribution (Cooley and Naff, 1990, p. 44, or any basic statistical text,

such as Benjamin and Cornell, 1970, p. 655) can be used to determine that

are normally

1.96 O1p 3.0 ft, or %10 " 1.53, where %10 is the estimated standard
deviation. The variance is calculated as the square of the standard

deviation, so a%z = 2.34 ft2.

If elevations of wells are obtained from USGS
topographic maps, the accuracy standards of the USGS can be used to quantify
errors in elevation. The USGS (1980, p. 6) states that on their topographic
maps, "***not more than ten percent of the elevations tested shall be in

error more than one-half the contour interval."

Estimation of each diagonal element of 2(532) can be accomplished by
using a similar procedure. For example, consider a loss in streamflow
between two gaging stations. The upstream and downstream streamflow
measurements are 3.0 ft3/s and 2.5 ft3/s, the measurements are each thought
to be accurate to within 5 percent (using, for example, Carter and Anderson,
1963, as in Hill and others, in press), and the errors in the two
measurements are considered to be independent. Stated quantitatively,
perhaps the hydrologist is 90 percent certain that the first measurement is
within 0.15 ft3/s of the true value, and 95 percent certain that the second
measurement is within 0.125 ft3/s of the true value. Assuming that the
errors are independent and normally distributed the standard deviation of
the first measurement is calculated from 1.65 o, - 0.15 ft /s, so a% = 0.083
(fts/s)2 The standard deviation of the second measurement is calculated

from 1.96 02 = 0.125 ft /s, so 02 = 0.0041 (ft /s) The variance of the
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loss of 0.5 ft3/s equals a% + a% = 0.0124 (ft3/s)2. The coefficient of
variation (standard deviation, 0.0124%, divided by the loss, 0.5 ft3/s) for
the loss in streamflow is, therefore, 0.22, which indicates a moderately

reliable value.

It generally is impossible to identify all errors that contribute to
the variance-covariance matrix, and the variances calculated by using the
methods discussed in this sect}on freAclearlyAapproximate. In the
Parameter-Estimation Package, O v, a%, and Z of the estimated equivalent
of equation (22) are specified independently to allow the user to
conveniently change the weight matrix for all hydraulic-héad observations
and temporal change in hydraulic-head observations, or all head-dependent
boundary gain-and-loss observations. This might be necessary if all the
weighted residuals of one type of data are larger than for the other, as
discussed in the section "Adjustments Commonly Required During Parameter
Estimation". It commonly is most convenient initial}y to define Q and 2 as

A

variance-covariances matrices, and set aﬁ = 1.0 and a% = 1.0. Changes in aﬁ

or a% can then easily be interpreted as changes in the initial estimate of
V(e). An additional simplification can be ach%eved by keeping the estimated
common variance equal to 1.0 and making all changes to the other variance.
Then, the final estimated error variance would|ideally equal 1.0 and, if the
residuals are nearly independent, they would résemble realizations from a
standard normal, N(0,1), distribution. ’

Data interpolated from observed dependent-variable values are sometimes
used to calibrate regression models. Neuman (1982), Clifton and Neuman
(1982), Neuman and Jacobson (1984), and Carrer‘ and Neuman (1986a) suggest
that kriging can be used to interpolate observed hydraulic-head values, and
the kriging variances and variogram can be used to calculate the variance-
covariance matrix. The advantage of interpolation methods is that more
hydraulic-head values are available for the regression. The disadvantage of
interpolation methods is that they are not based on the physics of ground-
water flow, and interpolated values might not be realistic. This problem is
most severe if aquifer properties change rapidly; the interpolation method
might make the hydraulic-head distribution unrealistically smooth, Use of
interpolated values in the regression procedure produces correlation between

the errors, so the third assumption stated abowe is not valid, and nonzero
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off-diagonal components of V(¢) are required. The computer program
presented in this report is not designed to accommodate nonzero off-diagonal

' components of V(g).

Prior Information on the Estimated Parameters
Data on model parameters that are independent of the observations of
dependent variables used in the regression exist in most problems. These
data are called prior information on the estimated parameters and can be
included in the regression if they can be expressed in a form similar to
equation (6) (Neuman and Yakowitz, 1979; Cooley, 1983a). Generally, such an
expression is not difficult. If, for example, an independent estimate, P,

exists for parameter ﬁz, P generally can be expressed as:
P = a, ﬂz + u, (28)

where a, is analogous to Xy, the NP-1 other coefficients equal zero, and u
is the true error of the prior estimate of the parameter and is analogous to
¢ in equation (6). The new notation is used to emphasize the difference
between the variables in equation (28) and those of equation (6). Prior
information also might apply to a combination of estimated parameters, so,

for example:

P = a, 62 +a, ﬂa + u. (29)

This might be useful, for example, if seasonal recharge rates are being
estimated and measurements of annual recharge are available; or if storage
coefficients of two model layers are being estimated, and an aquifer test
was conducted that measured the combined storage coefficient. Although
nonlinear prior relations also could be considered by nonlinear regression,

this option is not included in the Parameter-Estimation Package.

In some situations, many approximately equally reliable estimates of a
parameter might exist within its applicable region, as defined by
parameterization. For example, a parameter equal to the hydraulic
conductivity of a large area of an aquifer can be estimated using the
results of many specific-capacity tests (if the parameter is log-

transformed, the natural log of the estimates needs to be used). The goal

51



is to use the individual estimates to obtain an estimate of the hydraulic

conductivity of the entire region and a variance that represents the
reliability of this estimate. One way to acﬂieve this goal is to use the

arithmetic mean of the individual estimates dnd calculate the variance of

the estimate as the variance of the mean, ss/

1), n is the number of individual estimates,
_ n

and p = X pi/n (Benjamin and Cornell, p. 11
i=]

problems related to this method. First, rec

and Gorelick, 1989) has indicated that the a

]

2 s -2
n, where s = ( = (p;-p)“)/(n-
P g4
Py is an individual estimate,
and 385). There are two

! !
nt literature (Gomez-Hernandez

ithmetic mean is not always the

correct averaging method to use, and the reader might want to consider

alternatives, such as the geometric mean.

Nate that if the parameter is

log-transformed, ; is the geometric mean of the untransformed parameter.

Second, if n is very large, s2
parameter value virtually equal to its prior
might be a discrepancy between what is being
represented by the model parameter, and a lar
justified.

If estimates that are not approximately |

might be so small that its use would make the

estimate. In such cases, there
observed and what is

ger variance might be

equally reliable exist, as

would occur if hydraulic-conductivity estimates were available from aquifer

and specific-capacity tests, several options

exist. First, if the two types

of data represent the same part of the ground-water flow system, the less

accurate values can be ignored. If the two types of data represent

different parts of the system and the two me

n values of hydraulic

conductivity are quite different, reparameterization might be justified.

Other options can be developed based on the

ituation involved, but in no

situation can the data be combined into one mean estimate using the

equations from the preceding paragraph.

If many prior estimates on the estimated parameters exist, they can be

expressed similarly to equation (7):

|
(Py, a) 1> 85 5 **° a) yp)s (Byiay 4. &y

*** (Pypr+ NpR,1° 2NPR,2 °°° 2NPR,
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where the added subscripts indicate the sequential number of the prior
estimate, and NPR is the total number of prior estimates on the parameters.
(Note that NPR as used in this part of the report equals NPR+MPR as defined
in Appendix A and used in the FORTRAN code.) Once in this form, the NPR
equations can be added to equation (9) by augmenting y, X, y and ¢.

A regression equation analogous to equation (10) is produced by
replacing the true, but unknown, vector g8 with the vector of estimated
parameters, b, and substituting the residual vector, e, for the vector of
true errors, ¢. The regression equation augmented to include prior

information on the parameters can be expressed as:

A

Yy=-Xb+e=y+e ' (31)
where, X )
1 1,1 *1,2 " X1 np
y-| 72 , x=(%2,1 F2,2 T Fowp |,
{° b *
IND *\p,1  *Np,2 ... *ND,NP
Py 811 81,2 " 81N
P2 22,1 22,2 ... %28
{ Pypp L 3ypr,1  3NPR,2°""  °NPR, NP
Y1 s ]
- ).72 ’ e=- ?2
A :
< yND o < eND >
P u
%2 v
. Pypp/ \ UnpR/

where the true errors, u, have been replaced by the residuals, u. The b is

the same as in equation (10).
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The unweighted sum-of-squares objective function (eq. 11) now becomes:

ND A

s(b) - qfl (yq-yq)

NPR A 9
+ = (P_-P)°. (32)
p=1 P P

2

In a sense, a penalty function has been introduced that increases the
objective-function value as the parameter est mates produced by the
regression routine diverge from the prior estimates. By using the augmented
vectors and matrices of equation (32), S(b) still can be expressed as

(x-X h)T(x—g b) or ng, and the unweighted no#mal equations are still as in
equation (16). |

Prior estimates of the parameters are welghted to indicate their
reliability relative to each other and relative to the observations of
dependent variables, and to accommodate the different units the prior
estimates might have. Assuming that the errors on the hydraulic head,
streamflow gain-and-loss, and parameter data are uncorrelated, the weight
matrix of equation (23), in which ai is assumed to be the common error
variance, can be augmented to become:

- -

v 0 0
@ = Lo : (33)
0 Z - 0
- P a% -
RO

where U is the variance-covariance matrix for true errors in the prior

estimates of the parameters.

The most general form of U could be as complicated as the most general

form of the variance-covariance matrix on observations of dependent
variables, which was discussed in previous sections of this report. U can
be simplified by using assumptions that are nearly identical to the seven
assumptions discussed in those earlier sections. The resulting U has
nonzero elements only on its main diagonal, and these elements equal the
variances of the measurement errors of the prilor information on the
estimated parameters. U can be estimated by using methods similar to those

presented in the earlier sections.
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If the parameters with prior information are divided into groups with
the same units (for example, one group might be hydraulic-conductivity
values and another might be recharge rates), the variance-covariance matrix
for each group can be expressed as a dimensionless matrix multiplied by a

group variance. For example, with three groups, U can be expressed as:

- -

U 02 0
0 U 2 0
u=-1 = “P2 %, , (34a)
0 0 U 02
and U~ o, can be expressed as:
- 02 -
vl 3 0 0
P1 o
P
‘_1'10121 - 52 , (34b)
-1 h
0 u, 2 0
2 Py
-1 02
0 0 v
P3 2
i p3 -
2 2 2 :
where ¢ , o~ , and o~ are the variances for groups Py» Py and P3»
1 P2 P3

respectively. This representation is sometimes helpful when trying to

estimate the weight matrix of the prior parameter estimates.

The weighted sum-of-squares objective function is still expressed by
equation (18), except that e is augmented as in equation (31), and v is
augmented as in equation (33). Similarly, the weighted normal equations can
be calculated by using equation (19) with the augmented vectors and matrices
of equations (31) and (33).

55



Input Data Used by the Parameter-Estimation Package to Calculate the
Complete Weight Matrix

In the Parameter-Estimation Package, diagopal elements of V(¢) are

A A A

Lcalculated using 02, v, oes Z and U , which areiestimated equivalents of the

A

terms in equations (22) and (34). From a practical perspective, aﬁ andAaf
can be thought of as scaling factors, so that the diagonal elements of W and
Z are scaled variances. These scaled variances can be specified directly,
or the user can specify scaled standard deviations or scaled coefficients of
variation. When scaled standard deviations are| specified, the scaled
variances are calculated as the square of the scaled standard deviation;

when scaled coefficients of variation are specified, the scaled variances
are calculated as (1y)2, where vy is the scaled coefficient of variation and
y is the observed value of hydraulic head, temporal change in hydraulic
head, or head-dependent boundary gain or loss. |The diagonal weight matrix
is calculated from the variances using equation (17), (23), or (33) and

(34b), where the common error variance is set eﬁual to aﬁ or a%.

Components of the diagonal weight matrix related to prior parameter
estimates are calculated similarly, but the vartances, standard deviations,
or coefficients of variation specified by the user are not scaled. For
example, the ai , 1 = 1,3, of equation (34a) would be included in the value

i
specified by the user.

Analysis of Results for Linear Problems

Analysis of final parameter estimates and the assumed model are
required to: (1) Discriminate between models that use different
parameterizations, boundary conditions, or other choices of model

construction by comparing the results achieved from the different models,

and (2) determine if the simulated results are similar enough to observed
values and if the parameter estimates are reliable enough to justify using
the calibrated model to draw conclusions about the aquifer system or to
predict aquifer response. The second objective‘would benefit from
calculation of confidence intervals on the predicted quantities (Draper and
Smith, 1981, p. 94), but these confidence intervals are not included in the

Parameter-Estimation Package.
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Many of the methods discussed in this section are discussed in more
detail in Cooley and Naff (1990, ch. 5). See Cooley and others (1986) for

an example of how the methods can be used.

Parameter estimates are analyzed to determine: (1) How reliably they
are estimated by the available data; and (2) whether some of the parameters
are strongly correlated. A parameter cannot be reliably estimated if the
values of the dependent variables at all observation locations are
insensitive to that parameter and prior estimates are missing or inaccurate.
This might occur, for example, when trying to estimate hydraulic
conductivity in an area of an aquifer that is remote from all observation
locations. Strong correlation between parameters occurs when similar values
of the dependent variables at the observation locations are produced by
numerous, different combinations of parameter values and prior estimates of
the parameters do not exist or are inaccurate. For example, consider a
Darcy cylinder (fig. 15) packed with sand that has a known hydraulic head,
hl’ at X=0, and the unknown parameters K, the hydraulic conductivity of the
sand, and Q, the flow through the cylinder. Hydraulic head at any distance,
X, along the cylinder can be calculated as h-hl-gz X. As long as the ratio
Q/K is constant, the hydraulic-head distribution along the length of the
cylinder will be the same. Thus, Q and K are perfectly correlated and
cannot be estimated independently by using observed hydraulic heads.

The reliability and correlation of parameter estimates can be analyzed
by using the variance-covariance matrix, V(b'), for the final estimated

parameters, b’ (Bard, 1974, p. 59):
V') - s7xe 0 (35)

where V(k’) is an NP by NP matrix; sz, the estimated error variance, is the
minimized value of the objective function divided by ND+NPR-NP; and X and W
are augmented as in equations (31) and (33) if there is prior information on
the parameters. The validity of equation (35) depends on the model being
nearly linear in the vicinity of b’.
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h, HYDRAULIC-HEAD AT THE TWO ENDS

h
* "2 OF THE DARCY CYLINDER

|
Q FLOW THROUGH THE CYLINDER

HYDRAULIC CONDUCTIVITY OF THE
MATERIAL FILLING THE CYLINDER

X DISTANCE ALONG THE CYLINDER

Figure 15.--Darcy cylinder.

Each element along the main diagonal of the variance-covariance matrix,

Vigo equals the estimated variance of final parameter estimate bi. The

square root of each variance is the standard deviation of the parameter

estimate, and the coefficient of variation equals (vii)%/bi’ which is

dimensionless. The coefficient of variation is

the easiest statistic by

which to compare the reliability of different parameters estimated in a

single parameter-estimation run. However, as discussed in item 2 in the

section "Output for Test Case 1" in Appendix A,
coefficients of variation can be confusing if t

parameters. For linear problems, the variances

interpretation of the

here are log-transformed

calculated by using equation

(35) can be used to calculate confidence intervals on the estimated

parameters (Draper and Smith, 1981, p. 94) as:

b, t (vn)"' x t(ND+NPR-NP, 1.0-a/2)
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where, t(+,+) is a student-t probability distribution in which the first
argument equals the degrees of freedom, the second argument equals the
probability that ﬂi occurs within the confidence interval, and a equals the
probability that ﬂi occurs outside the confidence interval. The student-t
probability distribution is presented in table 2. For log-transformed
parameters, the confidence interval needs to be calculated on the log-
transformed parameter estimate. The exponential of the estimate equals the
mode of the lognormal probability distribution; the exponential of the
confidence limits are confidence limits on the mode, which might not be

symmetric about the mode.

Parameter reliability also can be characterized by using the eigen-
values and eigenvectors of V(b') (Carrera and Neuman, 1986c). Unlike the
previous work, in the Parameter-Estimation Package X(p’) is scaled with the
final estimated parameter values before eigenvalues and eigenvectors are
calculated. This is necessary to ensure that the eigenvalues and
eigenvectors, when used as described below, are indicative of parameter
reliability instead of differences in parameter values. Elements of the

scaled matrix are calculated as (Vij)/b The least reliable parameter

(bt
values can be identified by inspecting thi eigenvectors associated with the
largest eigenvalues. The parameters with the largest elements of these
eigenvectors are estimated least reliably. The most reliable parameter
values can be identified by inspecting the eigenvectors associated with the
smallest eigenvalues. The parameters related to the largest elements of

these eigenvectors are estimated most reliably.

Parameter reliability can be characterized by using either the
coefficient of variation or eigenvalues and eigenvectors, but the
conclusions generally are identical. Use of the coefficient of variation is

easier, so its use is encouraged.

59



[Modified from

Table 2.--Student t probability distribution

Draper and Smith (1981, p. 532) with perm

ission from publisher]

Degrees Probability!
of
freedom 0.9 0.7 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.001
1 0.158 0.510 1.000 1.963 3.078 6.314 12.706 31.821 63.657 636.619
2 0.142 0.445 0.816 1.386 1.886 2.920 4.303 6.965 9.925 31.598
3 0.137 0.424 0.765 1.250 1.638 2.353 3.182 4.541 5.841 12.924
4 0.134 0.414 0.741 1.190 1.533 2.132 2.776, 3.747 4.604 8.610
5 0.132 0.408 0.727 1.156 1.476 2.015 2.571 3.365 4.032 6.869
6 0.131 0.404 0.718 1.134 1.440 1.943 2.447 3.143  3.707 5.959
7 0.130 0.402 0.711 1.119 1.415 1.895 2.365 2.998 3.499 5.408
8 0.130 0.399 0.706 1.108 1.397 1.860 2.306 2.896 3.355 5.041
9 0.129 0.398 0.703 1.100 1.383 1.833 2.262 2.821 3.250 4.781
10 0.129 0.397 0.700 1.093 1.372 1.812 2.228 2.764 3.169 4,587
11 0.129 0.396 0.697 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 0.128 0.395 0.695 1.083 1.356 1.782 2.179 2.681 3.055 4.318
13 0.128 0.394 0.694 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 0.128 1.393 0.692 1.076 1.345 1.761 2.145 2.624 2.977 4.140
15 0.128 1.393 0.691 1.074 1.341 1.753 2.131 2.602 2.947 4.073
16 0.128 0.392 0.6%0 1.071 1.337 1.746 2,120 2.583 2.921 4.015
17 0.128 0.392 0.689 1.069 1.333 1.740 2.11Q 2.567 2.898 3.965
18 0.127 1.392 0.688 1.067 1.330 1.734 2.101 2.552 2.878 3.922
19 0.127 1.391 1.688 1.066 1.328 1.729 2.093 2.539 2.861 3.883
20 0.127 1.391 0.687 1.064 1.325 1.725 2.086 2.528 2.845 3.850
21 0.127 0.391 0.686 1.063 1.323 1.721 2.08Q 2.518 2.831 3.819
22 0.127 0.390 0.686 1.061 1.321 1.717 2.074 2.508 2.819 3.792
23 0.127 0.390 0.685 1.060 1.319 1.714 2.069 2.500 2.807 3.767
24 0.127 0.390 0.685 1.059 1.318 1.711 2.06 2.492 2.797 3.745
25 0.127 0.390 0.684 1.058 1.316 1.708 2.06 2.485 2.787 3.725
26 0.127 0.390 0.684 1.058 1.315 1.706 2.05 2.479  2.7719 3.707
27 0.127 0.389 0.684 1.057 1.314 1.703 2.05 2.473 2.71M 3.690
28 0.127 0.389 0.683 1.056 1.313 1.701 2.04 2.467 2.763 3.674
29 0.127 0.389 0.683 1.055 1.311 1.699 2.04 2.462 2.756 3.659
30 0.127 0.389 0.683 1.055 1.310 1.697 2.04 2.457 2.750 3.646
40 0.126 0.388 0.681 1.050 1.303 1.684 2.02 2.423  2.704 3.551
U
60 0.126 0.387 0.679 1.046 1.296 1.671 2.00 2.390 2.660 3.460
120 0.126 0.386 0.677 1.041 1.289 1.658 1.980 2.358 2.617 3.3713
% 0.126 0.385 0.674 1.036 1.282 1.645 1.960 2.326 2.576 3.291

1Probability = Area in two tails of distribution outgide *t-value in table.

/2 < 0/2

-t +t

Distribution of t

Table 2. Student-t probability
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The elements off the main diagonal of V(b’'), vij' ixj, are the
covariances. The correlation between any two parameters is measured by
correlation coefficients, which are calculated as (vij)/(vii)%(vjj)%.
Correlation coefficients can have values ranging from -1.0 to +1.0:
values of about zero indicate no correlation between bi’and b}; values of
about -1.0 or +1.0 indicate strong correlation. In the simple, two-
parameter problem presented at the beginning of this section, the

correlation between Q and K was +1.0.

Correlations also might occur between groups of parameters. If these
correlations are strong, similar dependent-variable values are produced by
different combinations of values of all the parameters in the group. For
example, in the two-layer aquifer system described as test case 1 in
Appendix A, doubling all hydraulic-conductivity values and all fluxes
produces an identical hydraulic-head distribution. The correlation
coefficients between pairs of parameters from a group of parameters that are
correlated generally are about 1.0 or -1.0, but it might not be obvious from
the correlation coefficients that the parameters form a group. Such a group
can be identified by using the eigenvectors of V(b’) scaled as described
above. Parameters in such groups are associated with nearly equal elements
within individual eigenvectors. The implied functional dependence is
stronger if the elements associated with the parameters are nearly equal in
several eignevectors, and if the eigenvector elements and the eigenvalue

associated with each eigenvector are large.

The assumed model also is analyzed to determine if the simulated
dependent-variable values are as expected--that is, are indicative of a
valid regression. Unexpected results would indicate that the assumed model
is biased. Evaluation of the assumed model is accomplished through
statistical and graphical analyses of the weighted observations, 9%1, the
weighted final simulated values, g% ¥, and the weighted final residuals, g%g
- 9%(1-£). Three commonly used statistics are the average weighted
residual, the estimated error variance, and the correlation coefficient.

The average weighted residual is calculated as the sum of the weighted
residuals divided by the number of weighted residuals, and needs to be about
zero. The estimated error variance, sz, was discussed after equation (35)

and is a measure of how similarly the final simulated values match the
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observed values. For simulations with the same weight matrix, smaller

values of 52 indicate a better match; 52 cannot be used to compare

regressions which use different weight matrices.

coefficient, R, measures how closely trends in
trends in the observed values and is calculate
p. 166):

A

(@ ™"y - mv)T(g'”x - m)

The correlation
the simulated values match
d as (Cooley and Naff, 1990,

R - A
[(@™*y

T A_% A_%A N T
m) (@ Ty - m)(@ Ty - m)(

>

where y, y, and w are defined in equations (9)

N

((ND &,
- | = @twm| 1
R q=1 ,

[ ND A )
t - z ) ND| 1,
m, [q-=1 (w x)q]/ 1

(37)

1€ >

-2 A B
X %)]

, (10), and (23).

and 1 is a vector of length ND with each element equal to 1. Note that

is simply a vector with each component equal t
weighted dependent-variable observations, and
using the weighted calculated dependent-variab
to be greater than 0.90. R also is calculated
in equations (31) and (33), in which case ND+N

calculating m_ and m”.
-y Ty

The statistical properties of the weighte
against their expected statistical properties

patterns that would indicate bias in the model.

the weighted true errors satisfied the conditi

o the average value of the
that g; is an analogous vector
le values. Generally R needs
with y, ;, and » augmented as
PR replaces ND when

d residuals are checked

to identify unexpected

One might expect that if
ons E(Q'%g) = 0 and !(g-%g) -

laz, the same would be true of the weighted r

siduals. If this were the

situation, the weighted residuals would be independent and have equal

variances. Although they actually might be correlated, as discussed below,

a first step toward analyzing the weighted residuals is accomplished by

testing whether they satisfy these properties.

For the purposes of the

first of the two tests performed, as described below, it also is assumed

62




that ¢ and, therefore, e are normally distributed. If the tests indicate

that the residuals are normal, independent, and have equal variance, the

model probably is unbiased.

The correlation coefficient between the weighted residuals ordered from
smallest to largest and the order statistics from a N(0,1) probability
distribution function (Brockwell and Davis, 1987, p. 304) is the first
statistic used to test for independent, normally distributed weighted
residuals. This statistic was chosen instead of other statistics, such as
chi-squared and Kolomogorov-Smirnov, because it is more powerful for
commonly used sample sizes (Shapiro and Francia, 1972). The correlation

coefficient, Rﬁ, is calculated as:

2
- , (38)
LT (e,-m1('s)

o
where all vectors are of length ND, m is a vector with all components equal
to the average of the weighted residuals, e, are the weighted residuals
ordered from smallest to largest, and r is a vector with the ith element
equal to the ordinate value of a N(0,1) probability distribution function
for a cumulative probability equal to u; - (i-0.5)/ND. 1f, for example,

u; = 0.8531, Ty~ 1.05.

The hypothesis that the weighted residuals are derived from an
independent, normal distribution is rejected if Rﬁ is too much smaller than
its ideal value of 1.0. The critical value below which the hypothesis is
rejected depends on the value of ND and on the significance level (Benjamin
and Cornell, 1970, p. 406) chosen by the user (table 3). If Rﬁ indicates
that the weighted residuals are not independent and normally distributed,
the hypothesis that they are correlated and normally distributed needs to be
tested, as discussed below. In any case, the three graphical analyses

described below need to be performed.
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Table 3: Critical values of R2 below which the hypothesis that the weight
residuals are independent and normally distributed is rejected
(From Shapiro and Francia, 1972; Brockwell and Davis, 1987, p.

ed

304)
ND or Significance level ND or Significance level
ND+NPR+MPR 0.05 0.10 ND+NPR+MPR 0.05 0.10
|
35 0.943 0.952 1 0.970 0.975
3 0.971 0.976
50 0.953 0.963 5 0.972 0.977
51 0.954 0.964 7 0.972 0.977
53 0.957 0.964 9 0.972 0.977
55 0.958 0.965
57 0.961 0.966 1 0.973 0.978
59 0.962 0.967 3 0.973 0.979
5 0.974 0.979
61 0.963 0.968 7 0.975 0.979
63 0.964 0.970 99 0.976 0.980
65 0.965 0.971 .
67 0.966 0.971 131 0.980 0.983
69 0.966 0.972 200 0.987 0.989
71 0.967 0.972 |
73 0.968 0.973 ‘
75 0.969 0.973 ;
77 0.969 0.974 !
79 0.970 0.975

The correlation coefficient of equation (38) is also calculated using
the vector of weighted residuals augmented for prior parameter estimates.
The augmented residual vector is shown after equation (31); the wéight
matrix is shown in equation (33); all vectors ?f equation (38) would be of
length ND+NPR. Inconsistency between the dependent-variable data and the
prior parameter estimates is indicated if this second evaluation of Rﬁ is
smaller than the value calculated using only dependent-variable weighted

residuals,

The runs test (Draper and Smith, 1981, p. 157-162) is used to test for
independent residuals. In the runs test, the number of sequences of
residuals of the same sign (u) is counted, along with the total number of
and the total number I

positive residuals (n f negative residuals (n2).

),
1
The expected number of runs equals y = [2n1 2/fnl+n2)]+1.0, and the varian
equals 02 = [2n1 2(2n1 27Dy " 2)]/[(n +n2) (n +n -1)]. The test statistic

for too few runs equals zg = (u-p+0.5)/0; the Lest statistic for too many
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runs equals z, - (u-p-0.5)/0. 1If n1>10 and n2>0, u is normally distributed
and critical values for z¢ and z are printed by the Parameter-Estimation
Package. Otherwise, a table such as the table in Draper and Smith (1981, p.

160-161) needs to be used to evaluate whether u is too small or too large.

The runs test is included in the Parameter-Estimation Package because it
takes the order of the residuals into account, which is ignored in the
correlation coefficient of equation (38). Normally, observations are
grouped by location in transient simulations, and too few runs commonly
indicates positive serial correlation between residuals at individual

locations.

Except when ND>>NP (Draper and Smith, 1981, p. 152; Cooley and others,
1986, p. 1771) the weighted residuals generally are correlated, even if the
weighted true errors are not. The expected variance-covariance matrix for
the weighted residuals is Y(B-%Q) - (I - §(§Tg g)'l §Ig)02 (Bard, 1974, p.
194; Cooley and Naff, 1990, p. 168), and graphical analyses of the weighted
residuals is done by comparing plots of the weighted residuals to plots of
realizations that have the same variance-covariance matrix. Assuming that
the weighted true errors are normally distributed, the realizations would be
derived from the joint normal probability distribution function N(Q,(I -
XX X) 1 xTw)o?). A slightly modified version of the FORTRAN program
presented by Cooley and Naff (1990, p. 176-183) can be used to produce
realizations from this probability distribution function. The modifications

are described in Appendix B of this report.

Three graphical analyses of the residuals are: (1) Plot the weighted
residuals and several realizations on maps of each of the simulated model
layers; (2) plot Ehe weighted residuals and several realizations against
their respective yq values on graph paper; and (3) plot the weighted
residuals and several realizations on probability paper. See Cooley and Naff
(1990, p. 168-170) for more information about graphical analyses.

Model discrimination can be performed by using the methods described

above to compare the results from alternative models. Models with smaller

parameter coefficients of variation, parameter correlations less than 0.95,
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smaller values of 52
of R2,

(if the weight matrices

statistical characteristics are considered to be better.

statistics are presented in the section "Analy
Model discrimination is difficult

is the best for all the measures indicated abo

Problems".

to be equally good, it might be helpful to per
using all of these models,

Adjustments Commonly Required During

As the modeler learns about the physical s
through modeling and parameter estimation, adj
the model, parameter definition, weight matrix
In part, this is the same process a modeler go
trial and error, but use of regression allows

rigorously and provides more information about

e identical), larger values

and weighted residuals that more closely match their expected

Additional

sis of Results for Nonlinear
because usually no one model
ve. If several models appear

form some predictive runs by

Parameter Estimation

ystem, the model, and the data
ustments commonly are made to
, and observation data sets.
es through when calibrating by
hypotheses to be tested more
the effects of the data on

parameter estimates and the reliability of the estimates.

For a model to be satisfactory, the weighted residuals produced by the

1)

final model need to satisfy two criteria:

A

The estimated common error

variance (02 or a%) needs to approximately equal the calculated error var-

iance, 52; and (2) the welghted residuals need to satisfy E(w e) = 0 and

V(w e) = (1- X(X w X) lew)az.

violation of the second criterion is indicati

As discussed 1

i

the previous section,
e of bias in the model.

One conspicuous indication of a problem is the presence of weighted

residuals at convergence of parameter estimati
parameter-estimation iterations if convergence
large that they dominate the regression, or so
the mo

by the regression. In such situations,

determine whether: (1) Some aspect of model ¢
(2) the parameter definition needs to be modifi
needs to be changed so that the data affect th
(4) dependent-variable observations or prior p

eliminated or corrected because they are clear
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on (or after several
is not achieved) that are so
small that they are ignored
del needs to be evaluated to
onstruction is incorrect;
ied; (3) the weight matrix
e regression more equally; or
arameter estimates need to be
ly biased.




Model construction can be modified, for example, by changing the
representation of physical boundary conditions, such as conversion of an
overlying constant-head boundary to a recharge boundary; and correction of
input data, such as known pumpage. Many of these are the same kind of

changes a modeler would consider as part of trial and error calibration.

Parameter definition can be modified, for example, by adding, omitting,
dividing, or combining parameters, or making other changes in the parame-
terization. Note that the final parameterization needs to be consistent
with what is known about hydrogeology of the ground-water flow system.
Changes to the weight matrix are common because aﬁ, a%, and a§

i
commonly are unknown, and there might be some question about the values in
W, Z, and Hp (see equations 17, 23, or 33 and 34). 1If all the weighted

i

residuals for one data type, such as head-dependent boundaryAgains and

losses, are extremely large or extremely small, aﬁ, ag, and 02 might need
iA A

to be adjusted to achieve a more even distribution. To adjust Opr O¢» and

ag such that the desired effect on the weights is achieved, consider how
i A A

the weights are calculated. If aﬁ is the common variance, 02, the weighting

of hydraulic heads and temporal changes in hydraulic heads can be adjusted
only by adjusting components of W. The weighting of head-dependent boundary

gains and losses would be sensitive to the ratio ah/af. For example, if a%

is increased by a factor of 4 the weighting of all gains and losses would be
decreased by a factor of 2. The weighting of prior parameter estimates
would be sensitive to the ratio af/a

i

If w is realistic and the weighted residuals have all desired

properties, but the estimated common error variance does not equal the

calculated error variance (02#52), the following procedure can be followed

if changing W or Z and U of equation (33) is acceptable. Set the estimated
A

common error variance equal to 52 and multiply all elements of U and either

W or Z (depending on whether o% or aﬁ is defined as the common error var-
iance, respectively) by s2/a§LD.

weight matrix, so that the regression will be the same.

These changes will produce an identical
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In some cases, individual observations dominate the regression or are
A A A

can be a
i
distribution, but the reason for the problem n

ignored. Components of W, Z, and Hp

making such adjustments. For example, Cooley
anticipated that the small error with which sh
would produce accurate hydraulic-head observat
During calibrati
"*%*the model fit no better at these points th

others, 1986, p. 1772).

assigned them large weights.

Apparently, the shall

shallow, local flow systems not represented in

this situation produced residuals that were as
with inaccurately observed deep wells. Decrea

observations from shallow wells produced more

Although the process described above can b
needs to remember that the weight matrix refle
weight matrix needs to be justifiable in terms
inadequacies of. the data.

Dependent-variable observations or prior p
regression can be eliminated only if careful c
indicates that they are clearly biased.
that is indicative of a legitimate problem in

Once residuals are fairly evenly distrib

ut
changes have been made to the model, and paramE

satisfactory, an attempt needs to be made to t
in the beginning of this section--that is, the

variance needs to approximately equal the calc

justed to achieve a more even

eds to be considered before
nd others (1986, p. 1764)
llow wells could be measured
ions at these points, and thus
on it was determined that

an elsewhere.” (Cooley and

ow wells were affected by

the regional-scale model, and

large as those associated
ing the weights for
atisfactory results.

come mechanical, the user
The final

\of known errors and

ts data accuracy.

Lrameter estimates from the

onsideration of the problem

The danger is in eliminating data

the model.

d, most of the anticipated

eter estimates are close to

est whether the goals stated
estimated common error

nmlated error variance, and the
A

weighted residuals should satisfy E(Q%g) = 0 and !(g%g) = (1-

T o\ -1,T%, 2
X(X'w X) X w)o --are satisfied by using the t

section. More changes in the model and the we
With so many things that might be changed,
the uniqueness of the final model. Even if an

routine produces a unique set of estimates (an
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